These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38968801)
1. The role of macrophages in fibrosis of chronic kidney disease. Li G; Yang H; Zhang D; Zhang Y; Liu B; Wang Y; Zhou H; Xu ZX; Wang Y Biomed Pharmacother; 2024 Aug; 177():117079. PubMed ID: 38968801 [TBL] [Abstract][Full Text] [Related]
3. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Tang PM; Zhou S; Li CJ; Liao J; Xiao J; Wang QM; Lian GY; Li J; Huang XR; To KF; Ng CF; Chong CC; Ma RC; Lee TL; Lan HY Kidney Int; 2018 Jan; 93(1):173-187. PubMed ID: 29042082 [TBL] [Abstract][Full Text] [Related]
4. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Wang S; Meng XM; Ng YY; Ma FY; Zhou S; Zhang Y; Yang C; Huang XR; Xiao J; Wang YY; Ka SM; Tang YJ; Chung AC; To KF; Nikolic-Paterson DJ; Lan HY Oncotarget; 2016 Feb; 7(8):8809-22. PubMed ID: 26684242 [TBL] [Abstract][Full Text] [Related]
5. The role of the SGK3/TOPK signaling pathway in the transition from acute kidney injury to chronic kidney disease. Shu H; Wang Y; Zhang H; Dong Q; Sun L; Tu Y; Liao Q; Feng L; Yao L Front Pharmacol; 2023; 14():1169054. PubMed ID: 37361201 [No Abstract] [Full Text] [Related]
6. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Anders HJ; Suarez-Alvarez B; Grigorescu M; Foresto-Neto O; Steiger S; Desai J; Marschner JA; Honarpisheh M; Shi C; Jordan J; Müller L; Burzlaff N; Bäuerle T; Mulay SR Kidney Int; 2018 Mar; 93(3):656-669. PubMed ID: 29241624 [TBL] [Abstract][Full Text] [Related]
7. The role of the macrophage-to-myofibroblast transition in renal fibrosis. Wei J; Xu Z; Yan X Front Immunol; 2022; 13():934377. PubMed ID: 35990655 [TBL] [Abstract][Full Text] [Related]
8. APC and ZBTB2 May Mediate M2 Macrophage Infiltration to Promote the Development of Renal Fibrosis: A Bioinformatics Analysis. Song J; Ke B; Fang X Biomed Res Int; 2024; 2024():5674711. PubMed ID: 39328595 [No Abstract] [Full Text] [Related]
9. Macrophages promote renal fibrosis through direct and indirect mechanisms. Nikolic-Paterson DJ; Wang S; Lan HY Kidney Int Suppl (2011); 2014 Nov; 4(1):34-38. PubMed ID: 26312148 [TBL] [Abstract][Full Text] [Related]
10. Macrophage promotes fibroblast activation and kidney fibrosis by assembling a vitronectin-enriched microenvironment. Peng Y; Li L; Shang J; Zhu H; Liao J; Hong X; Hou FF; Fu H; Liu Y Theranostics; 2023; 13(11):3897-3913. PubMed ID: 37441594 [No Abstract] [Full Text] [Related]
11. Macrophages in kidney injury, inflammation, and fibrosis. Cao Q; Harris DC; Wang Y Physiology (Bethesda); 2015 May; 30(3):183-94. PubMed ID: 25933819 [TBL] [Abstract][Full Text] [Related]
12. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Tang PM; Zhang YY; Xiao J; Tang PC; Chung JY; Li J; Xue VW; Huang XR; Chong CC; Ng CF; Lee TL; To KF; Nikolic-Paterson DJ; Lan HY Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20741-20752. PubMed ID: 32788346 [TBL] [Abstract][Full Text] [Related]
13. IRF-4 deficiency reduces inflammation and kidney fibrosis after folic acid-induced acute kidney injury. Chen M; Wen X; Gao Y; Liu B; Zhong C; Nie J; Liang H Int Immunopharmacol; 2021 Nov; 100():108142. PubMed ID: 34555644 [TBL] [Abstract][Full Text] [Related]
14. CSF-1R inhibition attenuates ischemia-induced renal injury and fibrosis by reducing Ly6C Deng X; Yang Q; Wang Y; Zhou C; Guo Y; Hu Z; Liao W; Xu G; Zeng R Int Immunopharmacol; 2020 Nov; 88():106854. PubMed ID: 32771945 [TBL] [Abstract][Full Text] [Related]
15. Macrophages: versatile players in renal inflammation and fibrosis. Tang PM; Nikolic-Paterson DJ; Lan HY Nat Rev Nephrol; 2019 Mar; 15(3):144-158. PubMed ID: 30692665 [TBL] [Abstract][Full Text] [Related]
16. Macrophage polarization in chronic kidney disease: a balancing act between renal recovery and decline? Engel JE; Chade AR Am J Physiol Renal Physiol; 2019 Dec; 317(6):F1409-F1413. PubMed ID: 31566432 [TBL] [Abstract][Full Text] [Related]
17. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614 [TBL] [Abstract][Full Text] [Related]
18. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease. Morinaga J; Kadomatsu T; Miyata K; Endo M; Terada K; Tian Z; Sugizaki T; Tanigawa H; Zhao J; Zhu S; Sato M; Araki K; Iyama K; Tomita K; Mukoyama M; Tomita K; Kitamura K; Oike Y Kidney Int; 2016 Feb; 89(2):327-41. PubMed ID: 26806834 [TBL] [Abstract][Full Text] [Related]
19. Esaxerenone inhibits the macrophage-to-myofibroblast transition through mineralocorticoid receptor/TGF-β1 pathway in mice induced with aldosterone. Qiang P; Hao J; Yang F; Han Y; Chang Y; Xian Y; Xiong Y; Gao X; Liang L; Shimosawa T; Xu Q Front Immunol; 2022; 13():948658. PubMed ID: 36148244 [TBL] [Abstract][Full Text] [Related]
20. The c-Abl-RACK1-FAK signaling axis promotes renal fibrosis in mice through regulating fibroblast-myofibroblast transition. Bao Q; Wang A; Hong W; Wang Y; Li B; He L; Yuan X; Ma G Cell Commun Signal; 2024 Apr; 22(1):247. PubMed ID: 38689280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]