These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Cooley S; Burns LJ; Repka T; Miller JS Exp Hematol; 1999 Oct; 27(10):1533-41. PubMed ID: 10517495 [TBL] [Abstract][Full Text] [Related]
25. SYD985, a Novel Duocarmycin-Based HER2-Targeting Antibody-Drug Conjugate, Shows Antitumor Activity in Uterine and Ovarian Carcinosarcoma with HER2/Neu Expression. Menderes G; Bonazzoli E; Bellone S; Black J; Predolini F; Pettinella F; Masserdotti A; Zammataro L; Altwerger G; Buza N; Hui P; Wong S; Litkouhi B; Ratner E; Silasi DA; Azodi M; Schwartz PE; Santin AD Clin Cancer Res; 2017 Oct; 23(19):5836-5845. PubMed ID: 28679774 [No Abstract] [Full Text] [Related]
26. Maitake Beta-Glucan Enhances the Therapeutic Effect of Trastuzumab via Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity. Masuda Y; Yamashita S; Nakayama Y; Shimizu R; Konishi M Biol Pharm Bull; 2024; 47(4):840-847. PubMed ID: 38616114 [TBL] [Abstract][Full Text] [Related]
27. In vitro and in vivo Anti-Tumor Effects of Pan-HER Inhibitor Varlitinib on Cholangiocarcinoma Cell Lines. Dokduang H; Jamnongkarn W; Promraksa B; Suksawat M; Padthaisong S; Thanee M; Phetcharaburanin J; Namwat N; Sangkhamanon S; Titapun A; Khuntikeo N; Klanrit P; Loilome W Drug Des Devel Ther; 2020; 14():2319-2334. PubMed ID: 32606601 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding. Borrok MJ; Luheshi NM; Beyaz N; Davies GC; Legg JW; Wu H; Dall'Acqua WF; Tsui P MAbs; 2015; 7(4):743-51. PubMed ID: 25970007 [TBL] [Abstract][Full Text] [Related]
29. Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer. Watanabe S; Yonesaka K; Tanizaki J; Nonagase Y; Takegawa N; Haratani K; Kawakami H; Hayashi H; Takeda M; Tsurutani J; Nakagawa K Cancer Med; 2019 Mar; 8(3):1258-1268. PubMed ID: 30701699 [TBL] [Abstract][Full Text] [Related]
30. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Carson WE; Parihar R; Lindemann MJ; Personeni N; Dierksheide J; Meropol NJ; Baselga J; Caligiuri MA Eur J Immunol; 2001 Oct; 31(10):3016-25. PubMed ID: 11592078 [TBL] [Abstract][Full Text] [Related]
31. Oncolytic Adenovirus Expressing Monoclonal Antibody Trastuzumab for Treatment of HER2-Positive Cancer. Liikanen I; Tähtinen S; Guse K; Gutmann T; Savola P; Oksanen M; Kanerva A; Hemminki A Mol Cancer Ther; 2016 Sep; 15(9):2259-69. PubMed ID: 27458139 [TBL] [Abstract][Full Text] [Related]
32. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines. Collins DM; Gately K; Hughes C; Edwards C; Davies A; Madden SF; O'Byrne KJ; O'Donovan N; Crown J Cell Immunol; 2017 Sep; 319():35-42. PubMed ID: 28735814 [TBL] [Abstract][Full Text] [Related]
33. In Vivo PET Imaging of Pham TT; Chenoweth A; Patel N; Banu A; Osborn G; Blower PJ; Karagiannis SN; Ma MT J Nucl Med; 2024 Jul; 65(7):1035-1042. PubMed ID: 38844362 [TBL] [Abstract][Full Text] [Related]
34. Near-infrared photoimmunotherapy (NIR-PIT) on cholangiocarcinoma using a novel catheter device with light emitting diodes. Hirata H; Kuwatani M; Nakajima K; Kodama Y; Yoshikawa Y; Ogawa M; Sakamoto N Cancer Sci; 2021 Feb; 112(2):828-838. PubMed ID: 33345417 [TBL] [Abstract][Full Text] [Related]
35. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Duong MN; Cleret A; Matera EL; Chettab K; Mathé D; Valsesia-Wittmann S; Clémenceau B; Dumontet C Breast Cancer Res; 2015 Apr; 17(1):57. PubMed ID: 25908175 [TBL] [Abstract][Full Text] [Related]
36. T-DM1, a novel antibody-drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo. English DP; Bellone S; Schwab CL; Bortolomai I; Bonazzoli E; Cocco E; Buza N; Hui P; Lopez S; Ratner E; Silasi DA; Azodi M; Schwartz PE; Rutherford TJ; Santin AD Cancer Med; 2014 Oct; 3(5):1256-65. PubMed ID: 24890382 [TBL] [Abstract][Full Text] [Related]
37. A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo. Shu M; Yan H; Xu C; Wu Y; Chi Z; Nian W; He Z; Xiao J; Wei H; Zhou Q; Zhou JX Sci Rep; 2020 Feb; 10(1):2986. PubMed ID: 32076029 [TBL] [Abstract][Full Text] [Related]
38. Antitumor activity of a monoclonal antibody targeting major histocompatibility complex class I-Her2 peptide complexes. Jain R; Rawat A; Verma B; Markiewski MM; Weidanz JA J Natl Cancer Inst; 2013 Feb; 105(3):202-18. PubMed ID: 23300219 [TBL] [Abstract][Full Text] [Related]
39. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Nordstrom JL; Gorlatov S; Zhang W; Yang Y; Huang L; Burke S; Li H; Ciccarone V; Zhang T; Stavenhagen J; Koenig S; Stewart SJ; Moore PA; Johnson S; Bonvini E Breast Cancer Res; 2011; 13(6):R123. PubMed ID: 22129105 [TBL] [Abstract][Full Text] [Related]
40. HER2 is frequently over-expressed in ovarian clear cell adenocarcinoma: possible novel treatment modality using recombinant monoclonal antibody against HER2, trastuzumab. Fujimura M; Katsumata N; Tsuda H; Uchi N; Miyazaki S; Hidaka T; Sakai M; Saito S Jpn J Cancer Res; 2002 Nov; 93(11):1250-7. PubMed ID: 12460467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]