These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38968932)

  • 1. Phonon mode at interface and its impact on interfacial thermal transport.
    Shan S; Zhang Z; Volz S; Chen J
    J Phys Condens Matter; 2024 Jul; 36(42):. PubMed ID: 38968932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental observation of localized interfacial phonon modes.
    Cheng Z; Li R; Yan X; Jernigan G; Shi J; Liao ME; Hines NJ; Gadre CA; Idrobo JC; Lee E; Hobart KD; Goorsky MS; Pan X; Luo T; Graham S
    Nat Commun; 2021 Nov; 12(1):6901. PubMed ID: 34824284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational predictions of quantum thermal transport across nanoscale interfaces.
    Zhou H; Ong ZY; Zhang G; Zhang YW
    Nanoscale; 2022 Jul; 14(26):9209-9217. PubMed ID: 35726755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States.
    Chen N; Yang K; Wang Z; Zhong B; Wang J; Song J; Li Q; Ni J; Sun F; Liu Y; Fan T
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34132-34144. PubMed ID: 37405384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon dynamic behaviors induced by amorphous layers at heterointerfaces.
    Wang Q; Zhang J; Xiong Y; Li S; Chernysh V; Liu X
    Phys Chem Chem Phys; 2024 Mar; 26(10):8397-8407. PubMed ID: 38407410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for enhancing interfacial phonon thermal transport by large-size nanostructures.
    Yin E; Li Q; Lian W
    Phys Chem Chem Phys; 2023 Feb; 25(5):3629-3638. PubMed ID: 36263751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical regulation to interfacial thermal transport in GaN/diamond heterostructures for thermal switch.
    Yu X; Li Y; He R; Wen Y; Chen R; Xu B; Gao Y
    Nanoscale Horiz; 2024 Aug; 9(9):1557-1567. PubMed ID: 39016031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface.
    Zang Y; Di C; Geng Z; Yan X; Ji D; Zheng N; Jiang X; Fu H; Wang J; Guo W; Sun H; Han L; Zhou Y; Gu Z; Kong D; Aramberri H; Cazorla C; Íñiguez J; Rurali R; Chen L; Zhou J; Wu D; Lu M; Nie Y; Chen Y; Pan X
    Adv Mater; 2022 Jan; 34(3):e2105778. PubMed ID: 34676925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor.
    Li YH; Qi RS; Shi RC; Hu JN; Liu ZT; Sun YW; Li MQ; Li N; Song CL; Wang L; Hao ZB; Luo Y; Xue QK; Ma XC; Gao P
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35181607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon transport in graphene based materials.
    Liu C; Lu P; Chen W; Zhao Y; Chen Y
    Phys Chem Chem Phys; 2021 Dec; 23(46):26030-26060. PubMed ID: 34515261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles calculations of interfacial thermal transport properties between SiC/Si substrates and compounds of boron with selected group V elements.
    Sun Z; Yuan K; Zhang X; Tang D
    Phys Chem Chem Phys; 2019 Mar; 21(11):6011-6020. PubMed ID: 30810132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moiré Pattern Controlled Phonon Polarizer Based on Twisted Graphene.
    Qin Z; Dai L; Li M; Li S; Wu H; White KE; Gani G; Weiss PS; Hu Y
    Adv Mater; 2024 Jun; 36(24):e2312176. PubMed ID: 38429904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport.
    Matsubara H; Surblys D; Ohara T
    Phys Rev E; 2023 Feb; 107(2-1):024103. PubMed ID: 36932576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces.
    Cheng Y; Xiong S; Zhang T
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Si/Ge interfacial thermal conductance enhancement through Sn nanoparticle embedding.
    Liu YG; Li HX; Qiu YJ; Li X; Huang CP
    Phys Chem Chem Phys; 2023 Nov; 25(42):29080-29087. PubMed ID: 37861992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.