These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38968974)

  • 1. NeuroHealth guardian: A novel hybrid approach for precision brain stroke prediction and healthcare analytics.
    Islam U; Mehmood G; Al-Atawi AA; Khan F; Alwageed HS; Cascone L
    J Neurosci Methods; 2024 Sep; 409():110210. PubMed ID: 38968974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
    Alie MS; Negesse Y; Kindie K; Merawi DS
    BMC Public Health; 2024 Jun; 24(1):1728. PubMed ID: 38943093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new hybrid ensemble machine-learning model for severity risk assessment and post-COVID prediction system.
    Shakhovska N; Yakovyna V; Chopyak V
    Math Biosci Eng; 2022 Apr; 19(6):6102-6123. PubMed ID: 35603393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the Stroke Risk of Patients using Machine Learning: A New Perspective from Sichuan and Chongqing.
    Zheng J; Xiong Y; Zheng Y; Zhang H; Wu R
    Eval Rev; 2024 Apr; 48(2):346-369. PubMed ID: 37533403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based prediction models for home discharge in patients with COVID-19: Development and evaluation using electronic health records.
    Zapata RD; Huang S; Morris E; Wang C; Harle C; Magoc T; Mardini M; Loftus T; Modave F
    PLoS One; 2023; 18(10):e0292888. PubMed ID: 37862334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interpretable machine learning model for stroke recurrence in patients with symptomatic intracranial atherosclerotic arterial stenosis.
    Gao Y; Li ZA; Zhai XY; Han L; Zhang P; Cheng SJ; Yue JY; Cui HK
    Front Neurosci; 2023; 17():1323270. PubMed ID: 38260008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
    Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Logistic regression analysis and machine learning for predicting post-stroke gait independence: a retrospective study.
    Miyazaki Y; Kawakami M; Kondo K; Hirabe A; Kamimoto T; Akimoto T; Hijikata N; Tsujikawa M; Honaga K; Suzuki K; Tsuji T
    Sci Rep; 2024 Sep; 14(1):21273. PubMed ID: 39261645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of successful aging using ensemble machine learning algorithms.
    Asghari Varzaneh Z; Shanbehzadeh M; Kazemi-Arpanahi H
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):258. PubMed ID: 36192713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting stroke occurrences: a stacked machine learning approach with feature selection and data preprocessing.
    Chakraborty P; Bandyopadhyay A; Sahu PP; Burman A; Mallik S; Alsubaie N; Abbas M; Alqahtani MS; Soufiene BO
    BMC Bioinformatics; 2024 Oct; 25(1):329. PubMed ID: 39407112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021.
    Ebrahim OA; Derbew G
    Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Machine Learning Algorithms in the Prediction of Hospitalized Patients with Schizophrenia.
    Góngora Alonso S; Marques G; Agarwal D; De la Torre Díez I; Franco-Martín M
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hubness weighted SVM ensemble for prediction of breast cancer subtypes.
    Raja Sree S; Kunthavai A
    Technol Health Care; 2022; 30(3):565-578. PubMed ID: 34397436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Almangush A; Leivo I
    Int J Med Inform; 2020 Apr; 136():104068. PubMed ID: 31923822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction and Diagnosis of Breast Cancer Using Machine and Modern Deep Learning Models.
    Devi S; Kaul Ghanekar R; Pande JA; Dumbre D; Chavan R; Gupta H
    Asian Pac J Cancer Prev; 2024 Mar; 25(3):1077-1085. PubMed ID: 38546090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database.
    Hao N; Sun P; Zhao W; Li X
    Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES).
    Choi Y; Cha J; Choi S
    BMC Bioinformatics; 2024 Feb; 25(1):56. PubMed ID: 38308205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.