These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38969048)

  • 1. The key role of unique crystalline property in the hydrolytic degradation process of microcrystalline cellulose-reinforced stereo-complexed poly(lactic acid) composites.
    Cheng Z; Wang Q; Lei L; Zhao B; Yu T; Fan J; Li Y
    Int J Biol Macromol; 2024 Jul; 275(Pt 1):133656. PubMed ID: 38969048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites.
    Wan Ishak WH; Rosli NA; Ahmad I
    Sci Rep; 2020 Jul; 10(1):11342. PubMed ID: 32647369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Preparation of Complete Stereo-Complexation Polylactic Acid Fiber and Its Hydrolysis Resistance.
    Sun M; Lu S; Zhao P; Feng Z; Yu M; Han K
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites.
    Rasheed M; Jawaid M; Parveez B; Hussain Bhat A; Alamery S
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33535490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose.
    Haafiz MK; Hassan A; Zakaria Z; Inuwa IM; Islam MS; Jawaid M
    Carbohydr Polym; 2013 Oct; 98(1):139-45. PubMed ID: 23987327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A feasible strategy to balance the performance of stereo-complexed polylactide by incorporating poly(butylene adipate-co-terephthalate).
    Tong M; Ma B; Wang X; He Y; Yu J
    Int J Biol Macromol; 2023 Feb; 228():366-373. PubMed ID: 36581027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocomposites of Poly(Lactic Acid) and Microcrystalline Cellulose: Influence of the Coupling Agent on Thermomechanical and Absorption Characteristics.
    Gorgun E; Ali A; Islam MS
    ACS Omega; 2024 Mar; 9(10):11523-11533. PubMed ID: 38496940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites.
    Valapa RB; G P; Katiyar V
    Int J Biol Macromol; 2016 Aug; 89():70-80. PubMed ID: 27095433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites.
    Kyutoku H; Maeda N; Sakamoto H; Nishimura H; Yamada K
    Carbohydr Polym; 2019 Jan; 203():95-102. PubMed ID: 30318239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Biodegradable Stereo-Complexed Poly (Lactic Acid) Drinking Straw of High Heat Resistance and Performance.
    Li R; Feng Y; Gong RH; Soutis C
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical crystallization strategy adaptive to 3-dimentional printing of polylactide matrix for complete stereo-complexation.
    Yang J; Li W; Mu B; Xu H; Hou X; Yang Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):247-257. PubMed ID: 34699890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites.
    Valapa R; Pugazhenthi G; Katiyar V
    Int J Biol Macromol; 2014 Apr; 65():275-83. PubMed ID: 24472504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil.
    Kale RD; Gorade VG; Madye N; Chaudhary B; Bangde PS; Dandekar PP
    Int J Biol Macromol; 2018 Oct; 118(Pt A):1090-1102. PubMed ID: 29920370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating the Biodegradation of Poly(lactic acid) through the Inclusion of Plant Fibers: A Review of Recent Advances.
    Momeni S; Craplewe K; Safder M; Luz S; Sauvageau D; Elias A
    ACS Sustain Chem Eng; 2023 Oct; 11(42):15146-15170. PubMed ID: 37886036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of Mechanical Properties of Flax/PLA Composites in Hygrothermal Aging Conditions.
    Wang L; Abenojar J; Martínez MA; Santiuste C
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Microcrystalline Cellulose Addition on the Properties of Wood-PLA Filaments for 3D Printing.
    Krapež Tomec D; Schöflinger M; Leßlhumer J; Gradišar Centa U; Žigon J; Kariž M
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Styrene-Assisted Maleic Anhydride Grafted Poly(lactic acid) as an Effective Compatibilizer for Wood Flour/Poly(lactic acid) Bio-Composites.
    Du J; Wang Y; Xie X; Xu M; Song Y
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review.
    Rosli NA; Karamanlioglu M; Kargarzadeh H; Ahmad I
    Int J Biol Macromol; 2021 Sep; 187():732-741. PubMed ID: 34358596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.