These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38969416)
1. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
2. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
3. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322 [TBL] [Abstract][Full Text] [Related]
5. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
6. Chiral recognition of tryptophan enantiomer based on the electrode modified by polyaniline adsorption bovine serum albumin complex. Yao W; Li S; Xie L; Jiang Y Chirality; 2023 Feb; 35(2):129-144. PubMed ID: 36564104 [TBL] [Abstract][Full Text] [Related]
7. Common materials, extraordinary behavior: An ultrasensitive and enantioselective strategy for D-Tryptophan recognition based on electrochemical Au@p-L-cysteine chiral interface. Deng Y; Zhang Z; Pang Y; Zhou X; Wang Y; Zhang Y; Yuan Y Anal Chim Acta; 2022 Sep; 1227():340331. PubMed ID: 36089298 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
9. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948 [TBL] [Abstract][Full Text] [Related]
10. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers. Pan QX; Yang YC; Zhao NN; Zhang B; Cui L; Zhang CY Anal Chim Acta; 2023 Sep; 1272():341480. PubMed ID: 37355327 [TBL] [Abstract][Full Text] [Related]
11. A renewable electrochemical sensor based on a self-assembled framework of chiral molecules for efficient identification of tryptophan isomers. Gong T; Zhu S; Huang S; Gu P; Xiong Y; Zhang J; Jiang X Anal Chim Acta; 2022 Jan; 1191():339276. PubMed ID: 35033270 [TBL] [Abstract][Full Text] [Related]
12. A biomolecule chiral interface base on BSA for electrochemical recognition of amine enantiomers. Lu Q; Chen L; Meng Q; Jiang Y; Xie L Chirality; 2021 Jul; 33(7):385-396. PubMed ID: 33938037 [TBL] [Abstract][Full Text] [Related]
13. Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Niu X; Mo Z; Yang X; Shuai C; Liu N; Guo R Bioelectrochemistry; 2019 Aug; 128():74-82. PubMed ID: 30933903 [TBL] [Abstract][Full Text] [Related]
14. Chirality detection of amino acid enantiomers by organic electrochemical transistor. Zhang L; Wang G; Xiong C; Zheng L; He J; Ding Y; Lu H; Zhang G; Cho K; Qiu L Biosens Bioelectron; 2018 May; 105():121-128. PubMed ID: 29412935 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Hou Y; Liang J; Kuang X; Kuang R Carbohydr Polym; 2022 Aug; 290():119474. PubMed ID: 35550750 [TBL] [Abstract][Full Text] [Related]
16. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
17. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Yang X; Niu X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Mikrochim Acta; 2019 May; 186(6):333. PubMed ID: 31065866 [TBL] [Abstract][Full Text] [Related]
18. Chiral Sensing of Tryptophan Enantiomers Based on the Enzyme Mimics of β-Cyclodextrin-Modified Sulfur Quantum Dots. Jiang W; He R; Lv H; He X; Wang L; Wei Y ACS Sens; 2023 Nov; 8(11):4264-4271. PubMed ID: 37997656 [TBL] [Abstract][Full Text] [Related]
19. Chiral Protein-Covalent Organic Framework 3D-Printed Structures as Chiral Biosensors. Wang L; Gao W; Ng S; Pumera M Anal Chem; 2021 Mar; 93(12):5277-5283. PubMed ID: 33729747 [TBL] [Abstract][Full Text] [Related]
20. A photothermal effect-based chiral sensor for chiral discrimination and sensitive detection. Cai W; Shi Y; Liu N; Yin ZZ; Li J; Xu L; Wu D; Kong Y Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124494. PubMed ID: 38788508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]