These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38969956)

  • 21. Physics-driven proper orthogonal decomposition: A simulation methodology for partial differential equations.
    Pulimeno A; Coates-Farley G; Veresko M; Jiang L; Cheng MC; Liu Y; Hou D
    MethodsX; 2023; 10():102204. PubMed ID: 37424764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions.
    Roy S; Hua JC; Barnhill W; Gunaratne GH; Gord JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013001. PubMed ID: 25679702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Particle swarm optimizer for arterial blood flow models.
    Aboelkassem Y; Savic D
    Comput Methods Programs Biomed; 2021 Apr; 201():105933. PubMed ID: 33517234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy of using mean arterial blood pressure sequence for three-element Windkessel model estimation.
    Gehalot P; Zhang R; Mathew A; Behbehani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1379-82. PubMed ID: 17946889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models.
    Alimohammadi M; Sherwood JM; Karimpour M; Agu O; Balabani S; Díaz-Zuccarini V
    Biomed Eng Online; 2015 Apr; 14():34. PubMed ID: 25881252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of 4D flow MRI-based non-invasive pressure assessment in aortic coarctations.
    Saitta S; Pirola S; Piatti F; Votta E; Lucherini F; Pluchinotta F; Carminati M; Lombardi M; Geppert C; Cuomo F; Figueroa CA; Xu XY; Redaelli A
    J Biomech; 2019 Sep; 94():13-21. PubMed ID: 31326119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parameter estimation for closed-loop lumped parameter models of the systemic circulation using synthetic data.
    Bjørdalsbakke NL; Sturdy JT; Hose DR; Hellevik LR
    Math Biosci; 2022 Jan; 343():108731. PubMed ID: 34758345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data.
    Capellini K; Gasparotti E; Cella U; Costa E; Fanni BM; Groth C; Porziani S; Biancolini ME; Celi S
    Med Eng Phys; 2021 May; 91():68-78. PubMed ID: 33008714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models.
    Reymond P; Crosetto P; Deparis S; Quarteroni A; Stergiopulos N
    Med Eng Phys; 2013 Jun; 35(6):784-91. PubMed ID: 22981220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New closed-form expressions for the estimation of arterial windkessel compliance.
    Gnudi G
    Comput Biol Med; 1998 May; 28(3):207-23. PubMed ID: 9784960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simplified method to account for wall motion in patient-specific blood flow simulations of aortic dissection: Comparison with fluid-structure interaction.
    Bonfanti M; Balabani S; Alimohammadi M; Agu O; Homer-Vanniasinkam S; Díaz-Zuccarini V
    Med Eng Phys; 2018 May; ():. PubMed ID: 29759947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of three- and four-element windkessel parameters using subspace model identification.
    Kind T; Faes TJ; Lankhaar JW; Vonk-Noordegraaf A; Verhaegen M
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1531-8. PubMed ID: 20172779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A numerical study of different projection-based model reduction techniques applied to computational homogenisation.
    Soldner D; Brands B; Zabihyan R; Steinmann P; Mergheim J
    Comput Mech; 2017; 60(4):613-625. PubMed ID: 31258232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards multi-modal data fusion for super-resolution and denoising of 4D-Flow MRI.
    Perez-Raya I; Fathi MF; Baghaie A; Sacho RH; Koch KM; D'Souza RM
    Int J Numer Method Biomed Eng; 2020 Sep; 36(9):e3381. PubMed ID: 32627366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement.
    Kamoi S; Pretty C; Balmer J; Davidson S; Pironet A; Desaive T; Shaw GM; Chase JG
    Biomed Eng Online; 2017 Apr; 16(1):51. PubMed ID: 28438216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection.
    Qiao Y; Zeng Y; Ding Y; Fan J; Luo K; Zhu T
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):620-630. PubMed ID: 30822150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows.
    Jayaraman B; Mamun SMAA
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition.
    Chang GH; Schirmer CM; Modarres-Sadeghi Y
    J Biomech; 2017 Mar; 54():33-43. PubMed ID: 28238422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.