These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38970555)

  • 1. Improving the Oxygen Evolution Reaction Kinetics in Zn-Air Battery by Iodide Oxidation Reaction.
    Ran J; Chen P; Quan X; Si M; Gao D
    Small; 2024 Jul; ():e2402052. PubMed ID: 38970555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic-self-catalysis as an accelerated air-cathode for rechargeable near-neutral Zn-air batteries with ultrahigh energy efficiency.
    Zhang T; Lim XF; Zhang S; Zheng J; Liu X; Lee JY
    Mater Horiz; 2023 Jul; 10(8):2958-2967. PubMed ID: 37166133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Potential Iodide Oxidation Enables Dual-Atom CoFe─N─C Catalysts for Ultra-Stable and High-Energy-Efficiency Zn-Air Batteries.
    Fan HS; Liang X; Ma FX; Zhang G; Liu ZQ; Zhen L; Zeng XC; Xu CY
    Small; 2024 Feb; 20(8):e2307863. PubMed ID: 37822157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrochemical cascade reaction for energy-saving hydrogen production and innovative Zn-air batteries.
    Zhang Y; Zheng Y; Deng H; Long Y; Jiang W; Li C; Li S; Li Z; Li G
    Bioelectrochemistry; 2024 Jun; 157():108666. PubMed ID: 38346369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecting N-doped Carbon Nanotube-Rich Carbon Nanofibers with Biomimetic Vine-Leaf-Whisker Structure as Robust Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries.
    Wang M; Chen Z; Song Y; Hu Z; Song H; Dong S; Yuan D
    Inorg Chem; 2024 Mar; 63(9):4373-4384. PubMed ID: 38376825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled three-dimensional leaf-like NiCoO
    Wu Z; Hu X; Cai C; Wang Y; Li X; Wen J; Li B; Gong H
    J Colloid Interface Sci; 2024 Mar; 657():75-82. PubMed ID: 38035421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Rechargeable Zn-Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Water-Retentive Gel Electrolyte with Reaction Modifier.
    Song Z; Ding J; Liu B; Liu X; Han X; Deng Y; Hu W; Zhong C
    Adv Mater; 2020 Jun; 32(22):e1908127. PubMed ID: 32301217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow Nanocages of Ni
    Qian Z; Chen Y; Tang Z; Liu Z; Wang X; Tian Y; Gao W
    Nanomicro Lett; 2019 Mar; 11(1):28. PubMed ID: 34137966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Cycling Performance of Rechargeable Zinc-Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive.
    Khezri R; Hosseini S; Lahiri A; Motlagh SR; Nguyen MT; Yonezawa T; Kheawhom S
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33023274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Substrate-Induced Fabrication of Active Free-Standing Nanocarbon Film as Air Cathode in Rechargeable Zinc-Air Batteries.
    Yan D; Xia C; He C; Liu Q; Chen G; Guo W; Xia BY
    Small; 2022 Feb; 18(7):e2106606. PubMed ID: 34874623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Situ Nanoarchitectonics of Fe/Co LDH over Cobalt-Enriched N-Doped Carbon Cookies as Facile Oxygen Redox Electrocatalysts for High-Rate Rechargeable Zinc-Air Batteries.
    Allwyn N; Gokulnath S; Sathish M
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38619401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Energy Conversion Efficiency and Durability of Alkaline Nickel-Zinc Batteries with Air-Breathing Cathode.
    Xie W; Zhu K; Yang H; Jiang W; Li W; Wang Z; Yang W
    Angew Chem Int Ed Engl; 2023 May; 62(22):e202303517. PubMed ID: 36973175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. I
    Cui M; Ma N; Lei H; Liu Y; Ling W; Chen S; Wang J; Li H; Li Z; Fan J; Huang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303845. PubMed ID: 37114563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Design Strategy and Active Site Regulation of High-Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn-Air Battery.
    Liu X; Zhang G; Wang L; Fu H
    Small; 2021 Dec; 17(48):e2006766. PubMed ID: 34085767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface engineering of Ruddlesden-Popper perovskite/CeO
    Deng Y; Du J; Zhu Y; Zhao L; Wang H; Gong Y; Jin J; He B; Wang R
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1775-1784. PubMed ID: 37838547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling MnS and CoS Nanocrystals on Self-Supported Porous N-doped Carbon Nanofibers to Enhance Oxygen Electrocatalytic Performance for Flexible Zn-Air Batteries.
    Shi X; Du J; Jia L; Gong Y; Jin J; Wang H; Wang R; Zhao L; He B
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26766-26777. PubMed ID: 37246583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co/Co
    Xu HM; Zhu HR; Zhang ZJ; Huang CJ; Shuai TY; Zhan QN; Li GR
    Inorg Chem; 2024 Feb; 63(8):3702-3711. PubMed ID: 38335057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology-Controllable Synthesis of Zn-Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc-Air Batteries and Water Electrolysis.
    Wu X; Han X; Ma X; Zhang W; Deng Y; Zhong C; Hu W
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12574-12583. PubMed ID: 28319373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Cycle Life of Zinc-Air Batteries with Calcium Ion Additive in Electrolyte or Separator.
    Zhang D; Hu W
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofiber Composite for Improved Water Retention and Dendrites Suppression in Flexible Zinc-Air Batteries.
    Chen Z; Yang X; Li W; Liang X; Guo J; Li H; He Y; Kim Y
    Small; 2021 Oct; 17(39):e2103048. PubMed ID: 34427378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.