These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38970798)

  • 1. Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture.
    Vasquez-Moscoso CA; Merlano JAR; Olivera Gálvez A; Volcan Almeida D
    Prep Biochem Biotechnol; 2024 Jul; ():1-10. PubMed ID: 38970798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial peptides derived from microalgae for combating antibiotic resistance: Current status and prospects.
    Ayswaria R; Vijayan J; Nathan VK
    Cell Biochem Funct; 2023 Mar; 41(2):142-151. PubMed ID: 36738178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance?
    Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV
    Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens.
    Chen C; Shi J; Wang D; Kong P; Wang Z; Liu Y
    Crit Rev Microbiol; 2024 May; 50(3):267-284. PubMed ID: 36890767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture.
    García-Beltrán JM; Arizcun M; Chaves-Pozo E
    Mar Drugs; 2023 May; 21(5):. PubMed ID: 37233484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides.
    Rojas V; Rivas L; Cárdenas C; Guzmán F
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33316949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants.
    Shanmugaraj B; Bulaon CJI; Malla A; Phoolcharoen W
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
    Sumi CD; Yang BW; Yeo IC; Hahm YT
    Can J Microbiol; 2015 Feb; 61(2):93-103. PubMed ID: 25629960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tools and techniques for rational designing of antimicrobial peptides for aquaculture.
    Bhat RAH; Thakuria D; Tandel RS; Khangembam VC; Dash P; Tripathi G; Sarma D
    Fish Shellfish Immunol; 2022 Aug; 127():1033-1050. PubMed ID: 35872334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sources of antimicrobial peptides against Gram-positives and Gramnegatives: our research experience.
    Rizzetto G; Gambini D; Maurizi A; Molinelli E; De Simoni E; Pallotta F; Brescini L; Cirioni O; Offidani A; Simonetti O; Giacometti A
    Infez Med; 2023; 31(3):306-322. PubMed ID: 37701381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses.
    Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J
    Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics.
    Kang SJ; Nam SH; Lee BJ
    Antibiotics (Basel); 2022 Sep; 11(10):. PubMed ID: 36289996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The revitalization of antimicrobial peptides in the resistance era.
    Liu Y; Shi J; Tong Z; Jia Y; Yang B; Wang Z
    Pharmacol Res; 2021 Jan; 163():105276. PubMed ID: 33161137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections.
    Zhu Y; Hao W; Wang X; Ouyang J; Deng X; Yu H; Wang Y
    Med Res Rev; 2022 Jul; 42(4):1377-1422. PubMed ID: 34984699
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L
    Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring microalgal and cyanobacterial metabolites with antiprotozoal activity against Leishmania and Trypanosoma parasites.
    Matos ÂP; Saldanha-Corrêa FMP; Gomes RDS; Hurtado GR
    Acta Trop; 2024 Mar; 251():107116. PubMed ID: 38159713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
    Maron B; Rolff J; Friedman J; Hayouka Z
    Microbiol Spectr; 2022 Aug; 10(4):e0097322. PubMed ID: 35862981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic Antimicrobial Effect of Antimicrobial Peptides CATH-1, CATH-3, and PMAP-36 With Erythromycin Against Bacterial Pathogens.
    Lu Y; Tian H; Chen R; Liu Q; Jia K; Hu DL; Chen H; Ye C; Peng L; Fang R
    Front Microbiol; 2022; 13():953720. PubMed ID: 35910608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptides for combating drug-resistant bacterial infections.
    Xuan J; Feng W; Wang J; Wang R; Zhang B; Bo L; Chen ZS; Yang H; Sun L
    Drug Resist Updat; 2023 May; 68():100954. PubMed ID: 36905712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.