These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38970974)
1. Synergistic role of phenylpropanoid biosynthesis and citrate cycle pathways in heavy metal detoxification through secretion of organic acids. Guan J; Zhang Y; Li D; Shan Q; Hu Z; Chai T; Zhou A; Qiao K J Hazard Mater; 2024 Sep; 476():135106. PubMed ID: 38970974 [TBL] [Abstract][Full Text] [Related]
2. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. Wang J; Liu X; Chen Y; Zhu FL; Sheng J; Diao Y PLoS One; 2024; 19(5):e0302940. PubMed ID: 38748679 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii. Ge J; Tao J; Zhao J; Wu Z; Zhang H; Gao Y; Tian S; Xie R; Xu S; Lu L Ecotoxicol Environ Saf; 2022 Aug; 241():113795. PubMed ID: 35753274 [TBL] [Abstract][Full Text] [Related]
4. Cadmium/lead tolerance of six Dianthus species and detoxification mechanism in Dianthus spiculifolius. Qiao K; Wang Q; Liu X; Gong S; Wang J Chemosphere; 2023 Jan; 312(Pt 1):137258. PubMed ID: 36402351 [TBL] [Abstract][Full Text] [Related]
5. Armeria maritima from a calamine heap--initial studies on physiologic-metabolic adaptations to metal-enriched soil. Olko A; Abratowska A; Zyłkowska J; Wierzbicka M; Tukiendorf A Ecotoxicol Environ Saf; 2008 Feb; 69(2):209-18. PubMed ID: 17391761 [TBL] [Abstract][Full Text] [Related]
6. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Veseý T; Tlustos P; Száková J Int J Phytoremediation; 2012 Apr; 14(4):335-49. PubMed ID: 22567715 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic and physiological analyses of Symphytum officinale L. in response to multiple heavy metal stress. Xu YF; Chen DW; Ma J; Gao RC; Bai J; Hou QZ Ecotoxicol Environ Saf; 2024 Jun; 277():116361. PubMed ID: 38663189 [TBL] [Abstract][Full Text] [Related]
8. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Jing YX; Yan JL; He HD; Yang DJ; Xiao L; Zhong T; Yuan M; Cai XD; Li SB Int J Phytoremediation; 2014; 16(4):321-33. PubMed ID: 24912234 [TBL] [Abstract][Full Text] [Related]
9. Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Zhang X; Zhong B; Shafi M; Guo J; Liu C; Guo H; Peng D; Wang Y; Liu D Environ Sci Pollut Res Int; 2018 Jul; 25(19):18846-18852. PubMed ID: 29713981 [TBL] [Abstract][Full Text] [Related]
10. Unravelling the halophyte Suaeda maritima as an efficient candidate for phytostabilization of cadmium and lead: Implications from physiological, ionomic, and metabolomic responses. Fatnani D; Parida AK Plant Physiol Biochem; 2024 Jul; 212():108770. PubMed ID: 38823092 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779 [TBL] [Abstract][Full Text] [Related]
12. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chen YX; Lin Q; Luo YM; He YF; Zhen SJ; Yu YL; Tian GM; Wong MH Chemosphere; 2003 Feb; 50(6):807-11. PubMed ID: 12688495 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423 [TBL] [Abstract][Full Text] [Related]
14. [Effects of Earthworm, Straw, and Citric Acid on the Remediation of Zn, Pb, and Cd Contaminated Soil by Chen MN; Nie XQ; Zhang XF; He CQ; Gao B Huan Jing Ke Xue; 2023 Mar; 44(3):1714-1726. PubMed ID: 36922232 [TBL] [Abstract][Full Text] [Related]
15. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? Schröder P; Lyubenova L; Huber C Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193 [TBL] [Abstract][Full Text] [Related]
16. Effects of microplastics on the phytoremediation of Cd, Pb, and Zn contaminated soils by Solanum photeinocarpum and Lantana camara. Yu Q; Gao B; Wu P; Chen M; He C; Zhang X Environ Res; 2023 Aug; 231(Pt 3):116312. PubMed ID: 37270082 [TBL] [Abstract][Full Text] [Related]
17. Exploring the combined effect of heavy metals on accumulation efficiency of Kaur R; Sharma R; Thakur S; Chandel S; Chauhan SK Int J Phytoremediation; 2024; 26(9):1486-1499. PubMed ID: 38555862 [TBL] [Abstract][Full Text] [Related]
18. [Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil]. Yang Z; Wang ZL; Li BW; Zhang RF Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):2025-31. PubMed ID: 19947228 [TBL] [Abstract][Full Text] [Related]
19. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892 [TBL] [Abstract][Full Text] [Related]
20. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Chen J; Shafi M; Wang Y; Wu J; Ye Z; Liu C; Zhong B; Guo H; He L; Liu D Environ Sci Pollut Res Int; 2016 Oct; 23(20):20977-20984. PubMed ID: 27488712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]