These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38970998)
1. Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides. Yi Y; Luan P; Fan M; Wu X; Sun Z; Shang Z; Yang Y; Li C Int J Food Microbiol; 2024 Sep; 422():110821. PubMed ID: 38970998 [TBL] [Abstract][Full Text] [Related]
2. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum. Gu Q; Yang Y; Yuan Q; Shi G; Wu L; Lou Z; Huo R; Wu H; Borriss R; Gao X Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733288 [No Abstract] [Full Text] [Related]
3. Fengycin Produced by Hanif A; Zhang F; Li P; Li C; Xu Y; Zubair M; Zhang M; Jia D; Zhao X; Liang J; Majid T; Yan J; Farzand A; Wu H; Gu Q; Gao X Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31137632 [No Abstract] [Full Text] [Related]
4. Antifungal potential of lipopeptides produced by the Hussain S; Tai B; Ali M; Jahan I; Sakina S; Wang G; Zhang X; Yin Y; Xing F Microbiol Spectr; 2024 Apr; 12(4):e0400823. PubMed ID: 38451229 [TBL] [Abstract][Full Text] [Related]
5. Chemosensitization of Kim K; Lee Y; Ha A; Kim JI; Park AR; Yu NH; Son H; Choi GJ; Park HW; Lee CW; Lee T; Lee YW; Kim JC Front Plant Sci; 2017; 8():2010. PubMed ID: 29230232 [TBL] [Abstract][Full Text] [Related]
6. Nanoencapsulation enhances the antimicrobial and antioxidant stability of cyclic lipopeptides for controlling Fusarium graminearum. Yi Y; Shan Y; Luan P; Sun Z; Wu X; Ning Z; Chen Z; Zhang Y; Zhao S; Li C Food Microbiol; 2024 Dec; 124():104621. PubMed ID: 39244372 [TBL] [Abstract][Full Text] [Related]
7. Isolation of lipopeptide antibiotics from Huang Y; Zhang X; Xu H; Zhang F; Zhang X; Yan Y; He L; Liu J Can J Microbiol; 2022 Jun; 68(6):403-411. PubMed ID: 35171710 [TBL] [Abstract][Full Text] [Related]
9. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Pan D; Mionetto A; Tiscornia S; Bettucci L Mycotoxin Res; 2015 Aug; 31(3):137-43. PubMed ID: 25956808 [TBL] [Abstract][Full Text] [Related]
10. Antifungal Activity of Quinofumelin against Xiu Q; Bi L; Xu H; Li T; Zhou Z; Li Z; Wang J; Duan Y; Zhou M Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34066154 [No Abstract] [Full Text] [Related]
11. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
12. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms. Liang C; Xi-Xi X; Yun-Xiang S; Qiu-Hua X; Yang-Yong L; Yuan-Sen H; Ke B World J Microbiol Biotechnol; 2023 Oct; 39(12):340. PubMed ID: 37821760 [TBL] [Abstract][Full Text] [Related]
13. A novel Bacillus sp. with antagonistic activity against a plant pathogen, Fusarium graminearum, and its potential antagonistic mechanism. Shen S; Yu F; Hao X; Chen J; Gao H; Lai X Lett Appl Microbiol; 2023 Sep; 76(9):. PubMed ID: 37656884 [TBL] [Abstract][Full Text] [Related]
14. Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a Biocontrol Agent Against Fusarium graminearum. Hu W; Gao Q; Hamada MS; Dawood DH; Zheng J; Chen Y; Ma Z Phytopathology; 2014 Dec; 104(12):1289-97. PubMed ID: 24941327 [TBL] [Abstract][Full Text] [Related]
15. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum. Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130 [TBL] [Abstract][Full Text] [Related]
16. Draft genome sequence of a lipopeptide-producing Bacillus amyloliquefaciens strain isolated from wheat field soil with antagonistic activity against azole-resistant Fusarium graminearum. Wang Y; Xu J; Shi J; Ma G; Wang G J Glob Antimicrob Resist; 2022 Jun; 29():555-557. PubMed ID: 34954102 [TBL] [Abstract][Full Text] [Related]
17. Study on the Antifungal Activity of Gallic Acid and Its Azole Derivatives against Zheng Y; Geng Y; Hou W; Li Z; Cheng C; Wang X; Yang Y Molecules; 2024 Apr; 29(9):. PubMed ID: 38731487 [TBL] [Abstract][Full Text] [Related]
18. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Zhao P; Quan C; Wang Y; Wang J; Fan S J Basic Microbiol; 2014 May; 54(5):448-56. PubMed ID: 23553741 [TBL] [Abstract][Full Text] [Related]
19. Suppression of Fusarium Wilt in Watermelon by Al-Mutar DMK; Alzawar NSA; Noman M; Azizullah ; Li D; Song F J Fungi (Basel); 2023 Mar; 9(3):. PubMed ID: 36983504 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of silver nanoparticles using Bacillus velezensis M3-7 lipopeptides: Enhanced antifungal activity and potential use as a biocontrol agent against Fusarium crown rot disease of wheat seedlings. Masmoudi F; Pothuvattil NS; Tounsi S; Saadaoui I; Trigui M Int J Food Microbiol; 2023 Dec; 407():110420. PubMed ID: 37783113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]