These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38971099)
21. UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution. Meng Y; Zhong W; Liu C; Su J; Su J; Lan Y; Wang Z; Wang M PeerJ; 2022; 10():e13064. PubMed ID: 35295557 [TBL] [Abstract][Full Text] [Related]
22. Study on droplet deposition characteristics and application of small and medium crown garden plants sprayed by UAV sprayer. Gao J; Bo P; Lan Y; Sun L; Liu H; Li X; Wang G; Wang H Front Plant Sci; 2024; 15():1343793. PubMed ID: 38828225 [TBL] [Abstract][Full Text] [Related]
23. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia. Hewitt AJ; Solomon KR; Marshall EJ J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760 [TBL] [Abstract][Full Text] [Related]
24. Monitoring and risk analysis of residual pesticides drifted by unmanned aerial spraying. Kim CJ; Yuan X; Kim M; Kyung KS; Noh HH Sci Rep; 2023 Jul; 13(1):10834. PubMed ID: 37407576 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
26. Tank-mix adjuvants improved spray performance and biological efficacy in rice insecticide application with unmanned aerial vehicle sprayer. Wang L; Xia S; Zhang H; Li Y; Huang Z; Qiao B; Zhong L; Cao M; He X; Wang C; Liu Y Pest Manag Sci; 2024 Sep; 80(9):4371-4385. PubMed ID: 38662472 [TBL] [Abstract][Full Text] [Related]
27. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
28. Toward a remote sensing method based on commercial LiDAR sensors for the measurement of spray drift and potential drift reduction. Li L; Zhang R; Chen L; Hewitt AJ; He X; Ding C; Tang Q; Liu B Sci Total Environ; 2024 Mar; 918():170819. PubMed ID: 38340824 [TBL] [Abstract][Full Text] [Related]
29. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
30. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
31. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related]
32. Stereoscopic plant-protection system integrating UAVs and autonomous ground sprayers for orchards. Jiang S; Chen B; Li W; Yang S; Zheng Y; Liu X Front Plant Sci; 2022; 13():1040808. PubMed ID: 36388533 [TBL] [Abstract][Full Text] [Related]
34. Environmental attitudes and drift reduction behavior among commercial pesticide applicators in a U.S. agricultural landscape. Reimer AP; Prokopy LS J Environ Manage; 2012 Dec; 113():361-9. PubMed ID: 23062271 [TBL] [Abstract][Full Text] [Related]
35. Assessing the application of spot spray in Nanguo pear orchards: Effect of nozzle type, spray volume rate and adjuvant. Guo S; Yao W; Xu T; Ma H; Sun M; Chen C; Lan Y Pest Manag Sci; 2022 Aug; 78(8):3564-3575. PubMed ID: 35598076 [TBL] [Abstract][Full Text] [Related]
36. Assessing the potential spray drift of a six-rotor unmanned aerial vehicle sprayer using a test bench and airborne drift collectors under low wind velocities: impact of atomization characteristics and application parameters. Wongsuk S; Zhu Z; Zheng A; Qi P; Li Y; Huang Z; Han H; Wang C; He X Pest Manag Sci; 2024 Dec; 80(12):6053-6067. PubMed ID: 39030971 [TBL] [Abstract][Full Text] [Related]
37. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
38. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece. Kasiotis KM; Glass CR; Tsakirakis AN; Machera K Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292 [TBL] [Abstract][Full Text] [Related]
39. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
40. Research on Methods Decreasing Pesticide Waste Based on Plant Protection Unmanned Aerial Vehicles: A Review. Hu H; Kaizu Y; Huang J; Furuhashi K; Zhang H; Li M; Imou K Front Plant Sci; 2022; 13():811256. PubMed ID: 35873963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]