These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38971264)

  • 21. A simplified spin and gradient echo approach for brain tumor perfusion imaging.
    Stokes AM; Quarles CC
    Magn Reson Med; 2016 Jan; 75(1):356-62. PubMed ID: 25753958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. "Synthetic" DSC perfusion MRI with adjustable acquisition parameters in brain tumors using dynamic spin-and-gradient-echo echoplanar imaging.
    Sanvito F; Yao J; Cho NS; Raymond C; Telesca D; Pope WB; Everson RG; Salamon N; Boxerman JL; Cloughesy TF; Ellingson BM
    AJNR Am J Neuroradiol; 2024 Sep; ():. PubMed ID: 39242197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lung parenchyma transverse relaxation rates at 0.55 T.
    Li B; Lee NG; Cui SX; Nayak KS
    Magn Reson Med; 2023 Apr; 89(4):1522-1530. PubMed ID: 36404674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of a combined spin- and gradient-echo (SAGE) DSC-MRI method for preclinical neuroimaging.
    Stokes AM; Skinner JT; Quarles CC
    Magn Reson Imaging; 2014 Dec; 32(10):1181-90. PubMed ID: 25172987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerated whole-brain perfusion imaging using a simultaneous multislice spin-echo and gradient-echo sequence with joint virtual coil reconstruction.
    Manhard MK; Bilgic B; Liao C; Han S; Witzel T; Yen YF; Setsompop K
    Magn Reson Med; 2019 Sep; 82(3):973-983. PubMed ID: 31069861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.
    Qin Q; Huang AJ; Hua J; Desmond JE; Stevens RD; van Zijl PC
    NMR Biomed; 2014 Feb; 27(2):116-28. PubMed ID: 24307572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the accuracy of multicomponent T
    Chan RW; Lau AZ; Detzler G; Thayalasuthan V; Nam RK; Haider MA
    Magn Reson Med; 2019 Jan; 81(1):466-476. PubMed ID: 30058296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies.
    Boxerman JL; Rosen BR; Weisskoff RM
    J Magn Reson Imaging; 1997; 7(3):528-37. PubMed ID: 9170038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T.
    Sedlacik J; Boelmans K; Löbel U; Holst B; Siemonsen S; Fiehler J
    Neuroimage; 2014 Jan; 84():1032-41. PubMed ID: 24004692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bayesian intravoxel incoherent motion parameter mapping in the human heart.
    Spinner GR; von Deuster C; Tezcan KC; Stoeck CT; Kozerke S
    J Cardiovasc Magn Reson; 2017 Nov; 19(1):85. PubMed ID: 29110717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multipathway multi-echo (MPME) imaging: all main MR parameters mapped based on a single 3D scan.
    Cheng CC; Preiswerk F; Hoge WS; Kuo TH; Madore B
    Magn Reson Med; 2019 Mar; 81(3):1699-1713. PubMed ID: 30320945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping of magnetic resonance imaging's transverse relaxation time at low signal-to-noise ratio using Bloch simulations and principal component analysis image denoising.
    Stern N; Radunsky D; Blumenfeld-Katzir T; Chechik Y; Solomon C; Ben-Eliezer N
    NMR Biomed; 2022 Dec; 35(12):e4807. PubMed ID: 35899528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transverse relaxation and flip angle mapping: Evaluation of simultaneous and independent methods using multiple spin echoes.
    McPhee KC; Wilman AH
    Magn Reson Med; 2017 May; 77(5):2057-2065. PubMed ID: 27367906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and accurate compensation of signal offset for T
    Michálek J; Hanzlíková P; Trinh T; Pacík D
    MAGMA; 2019 Aug; 32(4):423-436. PubMed ID: 30730022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MR susceptibility contrast imaging using a 2D simultaneous multi-slice gradient-echo sequence at 7T.
    Bian W; Kerr AB; Tranvinh E; Parivash S; Zahneisen B; Han MH; Lock CB; Goubran M; Zhu K; Rutt BK; Zeineh MM
    PLoS One; 2019; 14(7):e0219705. PubMed ID: 31314813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved quantification in CEST-MRI by joint spatial total generalized variation.
    Huemer M; Stilianu C; Maier O; Fabian MS; Schmidt M; Doerfler A; Bredies K; Zaiss M; Stollberger R
    Magn Reson Med; 2024 Oct; 92(4):1683-1697. PubMed ID: 38703028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-quality multiple T(2)(*) contrast MR images from low-quality multi-echo images using temporal-domain denoising methods.
    Jang U; Hwang D
    Med Phys; 2012 Jan; 39(1):468-74. PubMed ID: 22225317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inter-method reproducibility of biexponential R
    Pirasteh A; Yuan Q; Hernando D; Reeder SB; Pedrosa I; Yokoo T
    Magn Reson Med; 2018 Dec; 80(6):2691-2701. PubMed ID: 29770484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Suggests Normal Perfusion in Normal-Appearing White Matter in Multiple Sclerosis.
    Ingrisch M; Sourbron S; Herberich S; Schneider MJ; Kümpfel T; Hohlfeld R; Reiser MF; Ertl-Wagner B
    Invest Radiol; 2017 Mar; 52(3):135-141. PubMed ID: 27548346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.