These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38971396)

  • 1. Aerosol exposure at air-liquid-interface (AE-ALI) in vitro toxicity system characterisation: Particle deposition and the importance of air control responses.
    Buckley A; Guo C; Laycock A; Cui X; Belinga-Desaunay-Nault MF; Valsami-Jones E; Leonard M; Smith R
    Toxicol In Vitro; 2024 Oct; 100():105889. PubMed ID: 38971396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel exposure system generating nebulized aerosol of sulfur mustard in comparison to the standard submerse exposure.
    Tsoutsoulopoulos A; Siegert M; John H; Zubel T; Mangerich A; Schmidt A; Mückter H; Gudermann T; Thiermann H; Steinritz D; Popp T
    Chem Biol Interact; 2019 Jan; 298():121-128. PubMed ID: 30502332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of delivery of organic aerosols onto air-liquid interface cells in vitro using an electrostatic precipitator.
    Yu Z; Jang M; Sabo-Attwood T; Robinson SE; Jiang H
    Toxicol In Vitro; 2017 Aug; 42():319-328. PubMed ID: 28506819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke.
    Ihantola T; Di Bucchianico S; Happo M; Ihalainen M; Uski O; Bauer S; Kuuspalo K; Sippula O; Tissari J; Oeder S; Hartikainen A; Rönkkö TJ; Martikainen MV; Huttunen K; Vartiainen P; Suhonen H; Kortelainen M; Lamberg H; Leskinen A; Sklorz M; Michalke B; Dilger M; Weiss C; Dittmar G; Beckers J; Irmler M; Buters J; Candeias J; Czech H; Yli-Pirilä P; Abbaszade G; Jakobi G; Orasche J; Schnelle-Kreis J; Kanashova T; Karg E; Streibel T; Passig J; Hakkarainen H; Jokiniemi J; Zimmermann R; Hirvonen MR; Jalava PI
    Part Fibre Toxicol; 2020 Jun; 17(1):27. PubMed ID: 32539833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.
    Polk WW; Sharma M; Sayes CM; Hotchkiss JA; Clippinger AJ
    Part Fibre Toxicol; 2016 Apr; 13():20. PubMed ID: 27108236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.
    Latvala S; Hedberg J; Möller L; Odnevall Wallinder I; Karlsson HL; Elihn K
    J Appl Toxicol; 2016 Oct; 36(10):1294-301. PubMed ID: 26935862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems.
    Ding Y; Weindl P; Lenz AG; Mayer P; Krebs T; Schmid O
    Part Fibre Toxicol; 2020 Sep; 17(1):44. PubMed ID: 32938469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro.
    Küstner MJ; Eckstein D; Brauer D; Mai P; Hampl J; Weise F; Schuhmann B; Hause G; Glahn F; Foth H; Schober A
    Arch Toxicol; 2024 Apr; 98(4):1061-1080. PubMed ID: 38340173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cell cultures.
    Medina-Reyes EI; Delgado-Buenrostro NL; Leseman DL; Déciga-Alcaraz A; He R; Gremmer ER; Fokkens PHB; Flores-Flores JO; Cassee FR; Chirino YI
    Toxicol In Vitro; 2020 Jun; 65():104798. PubMed ID: 32084520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution.
    Zavala J; O'Brien B; Lichtveld K; Sexton KG; Rusyn I; Jaspers I; Vizuete W
    Inhal Toxicol; 2016; 28(6):251-9. PubMed ID: 27100558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Deposition by Electrostatic Field-Assistance Aggravating Diesel Exhaust Aerosol Toxicity for Human Lung Cells.
    Stoehr LC; Madl P; Boyles MS; Zauner R; Wimmer M; Wiegand H; Andosch A; Kasper G; Pesch M; Lütz-Meindl U; Himly M; Duschl A
    Environ Sci Technol; 2015 Jul; 49(14):8721-30. PubMed ID: 26083946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.
    Loret T; Peyret E; Dubreuil M; Aguerre-Chariol O; Bressot C; le Bihan O; Amodeo T; Trouiller B; Braun A; Egles C; Lacroix G
    Part Fibre Toxicol; 2016 Nov; 13(1):58. PubMed ID: 27919268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica nanoparticles are less toxic to human lung cells when deposited at the air-liquid interface compared to conventional submerged exposure.
    Panas A; Comouth A; Saathoff H; Leisner T; Al-Rawi M; Simon M; Seemann G; Dössel O; Mülhopt S; Paur HR; Fritsch-Decker S; Weiss C; Diabaté S
    Beilstein J Nanotechnol; 2014; 5():1590-1602. PubMed ID: 25247141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols.
    Fröhlich E; Bonstingl G; Höfler A; Meindl C; Leitinger G; Pieber TR; Roblegg E
    Toxicol In Vitro; 2013 Feb; 27(1):409-17. PubMed ID: 22906573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose-controlled exposure of A549 epithelial cells at the air-liquid interface to airborne ultrafine carbonaceous particles.
    Bitterle E; Karg E; Schroeppel A; Kreyling WG; Tippe A; Ferron GA; Schmid O; Heyder J; Maier KL; Hofer T
    Chemosphere; 2006 Dec; 65(10):1784-90. PubMed ID: 16762398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the CULTEX(®) radial flow system for in vitro investigation of lung damaging agents.
    Tsoutsoulopoulos A; Möhle N; Aufderheide M; Schmidt A; Thiermann H; Steinritz D
    Toxicol Lett; 2016 Feb; 244():28-34. PubMed ID: 26358518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.
    Jing X; Park JH; Peters TM; Thorne PS
    Toxicol In Vitro; 2015 Apr; 29(3):502-11. PubMed ID: 25575782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alveolar epithelial cells (A549) exposed at the air-liquid interface to diesel exhaust: First study in TNO's powertrain test center.
    Kooter IM; Alblas MJ; Jedynska AD; Steenhof M; Houtzager MM; van Ras M
    Toxicol In Vitro; 2013 Dec; 27(8):2342-9. PubMed ID: 24161370
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Tilly TB; Nelson MT; Chakravarthy KB; Shira EA; Debrose MC; Grabinski CM; Salisbury RL; Mattie DR; Hussain SM
    Chem Res Toxicol; 2020 May; 33(5):1179-1194. PubMed ID: 31809042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.