These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38971492)
1. Auto-inducible synthetic pathway in E. coli enhanced sustainable indigo production from glucose. Pham NN; Wu YH; Dai TA; Tu J; Liang RM; Hsieh HY; Chang CW; Hu YC Metab Eng; 2024 Sep; 85():14-25. PubMed ID: 38971492 [TBL] [Abstract][Full Text] [Related]
2. [A dual-enzyme cascade for production of indigo from L-tryptophan]. Luo S; Wei W; Wu J; Song W; Hu G; Liu L Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2444-2456. PubMed ID: 39174464 [TBL] [Abstract][Full Text] [Related]
3. Application of metabolic engineering to improve both the production and use of biotech indigo. Berry A; Dodge TC; Pepsin M; Weyler W J Ind Microbiol Biotechnol; 2002 Mar; 28(3):127-33. PubMed ID: 12074085 [TBL] [Abstract][Full Text] [Related]
4. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Gu P; Yang F; Kang J; Wang Q; Qi Q Microb Cell Fact; 2012 Mar; 11():30. PubMed ID: 22380540 [TBL] [Abstract][Full Text] [Related]
5. High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Fang MY; Zhang C; Yang S; Cui JY; Jiang PX; Lou K; Wachi M; Xing XH Microb Cell Fact; 2015 Jan; 14():8. PubMed ID: 25592762 [TBL] [Abstract][Full Text] [Related]
6. Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters. Kim HJ; Ham S; Shin N; Hwang JH; Oh SJ; Choi TR; Joo JC; Bhatia SK; Yang YH J Microbiol Biotechnol; 2024 Apr; 34(4):969-977. PubMed ID: 38213292 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. Du J; Yang D; Luo ZW; Lee SY J Biotechnol; 2018 Feb; 267():19-28. PubMed ID: 29301095 [TBL] [Abstract][Full Text] [Related]
8. Expression of the two-component regulator StyS/StyR enhanced transcription of the styrene monooxygenase gene styAB and indigo biosynthesis in Escherichia coli. Yin S; Li Y; Hou J Enzyme Microb Technol; 2024 Mar; 174():110381. PubMed ID: 38134734 [TBL] [Abstract][Full Text] [Related]
9. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. Shen T; Liu Q; Xie X; Xu Q; Chen N J Biomed Biotechnol; 2012; 2012():605219. PubMed ID: 22791961 [TBL] [Abstract][Full Text] [Related]
10. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. Luo ZW; Kim WJ; Lee SY ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230 [TBL] [Abstract][Full Text] [Related]
11. Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli. Xiong B; Zhu Y; Tian D; Jiang S; Fan X; Ma Q; Wu H; Xie X Biotechnol Bioeng; 2021 Mar; 118(3):1393-1404. PubMed ID: 33399214 [TBL] [Abstract][Full Text] [Related]
12. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering]. Li Y; Zhu J; Wang J; Xia H; Wu S Sheng Wu Gong Cheng Xue Bao; 2016 Jan; 32(1):41-50. PubMed ID: 27363197 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose. Zhang Z; Yu Z; Wang J; Yu Y; Li L; Sun P; Fan X; Xu Q Microb Cell Fact; 2022 Sep; 21(1):198. PubMed ID: 36153615 [TBL] [Abstract][Full Text] [Related]
14. Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis. Chen T; Wang X; Zhuang L; Shao A; Lu Y; Zhang H Microb Cell Fact; 2021 Aug; 20(1):154. PubMed ID: 34348711 [TBL] [Abstract][Full Text] [Related]
15. Overview of indigo biosynthesis by Flavin-containing Monooxygenases: History, industrialization challenges, and strategies. Fan C; Xie Z; Zheng D; Zhang R; Li Y; Shi J; Cheng M; Wang Y; Zhou Y; Zhan Y; Yan Y Biotechnol Adv; 2024; 73():108374. PubMed ID: 38729229 [TBL] [Abstract][Full Text] [Related]
16. Engineering of Shikimate Pathway and Terminal Branch for Efficient Production of L-Tryptophan in Liu S; Wang BB; Xu JZ; Zhang WG Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511626 [TBL] [Abstract][Full Text] [Related]
17. Exploration of Acetylation as a Base-Labile Protecting Group in Latimer LN; Russ ZN; Lucas J; Dueber JE ACS Synth Biol; 2020 Oct; 9(10):2775-2783. PubMed ID: 32886882 [TBL] [Abstract][Full Text] [Related]
18. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. Chen Y; Liu Y; Ding D; Cong L; Zhang D J Ind Microbiol Biotechnol; 2018 May; 45(5):357-367. PubMed ID: 29460214 [TBL] [Abstract][Full Text] [Related]
19. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Chen L; Chen M; Ma C; Zeng AP Metab Eng; 2018 May; 47():434-444. PubMed ID: 29733896 [TBL] [Abstract][Full Text] [Related]
20. Metabolic control analysis enables rational improvement of E. coli L-tryptophan producers but methylglyoxal formation limits glycerol-based production. Schoppel K; Trachtmann N; Korzin EJ; Tzanavari A; Sprenger GA; Weuster-Botz D Microb Cell Fact; 2022 Oct; 21(1):201. PubMed ID: 36195869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]