These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38971503)

  • 1. Current multi-scale biomaterials for tissue regeneration following spinal cord injury.
    Zhang Y; Wu Z; Wu J; Li T; Jiang F; Yang B
    Neurochem Int; 2024 Sep; 178():105801. PubMed ID: 38971503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury.
    Liu T; Zhu W; Zhang X; He C; Liu X; Xin Q; Chen K; Wang H
    Biomed Res Int; 2022; 2022():5079153. PubMed ID: 35978649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Multichannel Poly(Propylene Fumarate)-Collagen Scaffold with Collagen-Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury.
    Chen X; Zhao Y; Li X; Xiao Z; Yao Y; Chu Y; Farkas B; Romano I; Brandi F; Dai J
    Adv Healthc Mater; 2018 Jul; 7(14):e1800315. PubMed ID: 29920990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury.
    Li Z; Wang Q; Hu H; Zheng W; Gao C
    Biomed Mater; 2021 Aug; 16(5):. PubMed ID: 34384071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation.
    Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J
    Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review.
    Kaplan B; Levenberg S
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury.
    Kubinová Š
    Neurochem Res; 2020 Jan; 45(1):171-179. PubMed ID: 31028504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regenerative rehabilitation with conductive biomaterials for spinal cord injury.
    Kiyotake EA; Martin MD; Detamore MS
    Acta Biomater; 2022 Feb; 139():43-64. PubMed ID: 33326879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration.
    Qin C; Qi Z; Pan S; Xia P; Kong W; Sun B; Du H; Zhang R; Zhu L; Zhou D; Yang X
    Int J Nanomedicine; 2023; 18():7305-7333. PubMed ID: 38084124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology for the Treatment of Spinal Cord Injury.
    Zimmermann R; Vieira Alves Y; Sperling LE; Pranke P
    Tissue Eng Part B Rev; 2021 Aug; 27(4):353-365. PubMed ID: 33135599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury.
    Shortiss C; Howard L; McMahon SS
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Application of Biomaterials in Spinal Cord Injury.
    Feng C; Deng L; Yong YY; Wu JM; Qin DL; Yu L; Zhou XG; Wu AG
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in electroactive bioscaffolds for repairing spinal cord injury.
    Liu Z; Lai J; Kong D; Zhao Y; Zhao J; Dai J; Zhang M
    Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38636508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment.
    Xiang W; Cao H; Tao H; Jin L; Luo Y; Tao F; Jiang T
    Int J Biol Macromol; 2023 Mar; 230():123447. PubMed ID: 36708903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterials and strategies for repairing spinal cord lesions.
    Jeong HJ; Yun Y; Lee SJ; Ha Y; Gwak SJ
    Neurochem Int; 2021 Mar; 144():104973. PubMed ID: 33497713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent.
    Terraf P; Kouhsari SM; Ai J; Babaloo H
    Mol Neurobiol; 2017 Sep; 54(7):5657-5667. PubMed ID: 27624387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.