These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38971604)

  • 41. 1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy.
    Liu J; Conboy JC
    Biophys J; 2005 Oct; 89(4):2522-32. PubMed ID: 16085770
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and dynamics of a nanodisc by integrating NMR, SAXS and SANS experiments with molecular dynamics simulations.
    Bengtsen T; Holm VL; Kjølbye LR; Midtgaard SR; Johansen NT; Tesei G; Bottaro S; Schiøtt B; Arleth L; Lindorff-Larsen K
    Elife; 2020 Jul; 9():. PubMed ID: 32729831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time-resolved small-angle neutron scattering (TR-SANS) for structural biology of dynamic systems: Principles, recent developments, and practical guidelines.
    Martel A; Gabel F
    Methods Enzymol; 2022; 677():263-290. PubMed ID: 36410952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Examining protein-lipid complexes using neutron scattering.
    Clifton LA; Neylon C; Lakey JH
    Methods Mol Biol; 2013; 974():119-50. PubMed ID: 23404275
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics and thermodynamics of flip-flop in binary phospholipid membranes measured by sum-frequency vibrational spectroscopy.
    Anglin TC; Conboy JC
    Biochemistry; 2009 Nov; 48(43):10220-34. PubMed ID: 19746969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes.
    Contreras FX; Sánchez-Magraner L; Alonso A; Goñi FM
    FEBS Lett; 2010 May; 584(9):1779-86. PubMed ID: 20043909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Large stress asymmetries of lipid bilayers and nanovesicles generate lipid flip-flops and bilayer instabilities.
    Sreekumari A; Lipowsky R
    Soft Matter; 2022 Aug; 18(32):6066-6078. PubMed ID: 35929498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multilamellarity, structure and hydration of extruded POPC vesicles by SANS.
    Schmiedel H; Almásy L; Klose G
    Eur Biophys J; 2006 Feb; 35(3):181-9. PubMed ID: 16283292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Small angle neutron scattering for the study of solubilised membrane proteins.
    Breyton C; Gabel F; Lethier M; Flayhan A; Durand G; Jault JM; Juillan-Binard C; Imbert L; Moulin M; Ravaud S; Härtlein M; Ebel C
    Eur Phys J E Soft Matter; 2013 Jul; 36(7):71. PubMed ID: 23852580
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid flip-flop and desorption from supported lipid bilayers is independent of curvature.
    Jing H; Wang Y; Desai PR; Ramamurthi KS; Das S
    PLoS One; 2020; 15(12):e0244460. PubMed ID: 33378379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ceramide-induced transbilayer (flip-flop) lipid movement in membranes.
    Contreras FX; Villar AV; Alonso A; Goñi FM
    Methods Mol Biol; 2009; 462():155-65. PubMed ID: 19160667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fatty acid flip-flop in phospholipid bilayers is extremely fast.
    Kamp F; Zakim D; Zhang F; Noy N; Hamilton JA
    Biochemistry; 1995 Sep; 34(37):11928-37. PubMed ID: 7547929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flip-flop of steroids in phospholipid bilayers: effects of the chemical structure on transbilayer diffusion.
    Parisio G; Sperotto MM; Ferrarini A
    J Am Chem Soc; 2012 Jul; 134(29):12198-208. PubMed ID: 22738146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes.
    Kamiya K; Kawano R; Osaki T; Akiyoshi K; Takeuchi S
    Nat Chem; 2016 Sep; 8(9):881-9. PubMed ID: 27554415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles.
    London E
    Acc Chem Res; 2019 Aug; 52(8):2382-2391. PubMed ID: 31386337
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Accelerating Lipid Flip-Flop at Low Concentrations: A General Mechanism for Membrane Binding Peptides.
    Carrer M; Nielsen JE; Cezar HM; Lund R; Cascella M; Soares TA
    J Phys Chem Lett; 2023 Aug; 14(31):7014-7019. PubMed ID: 37523748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles.
    Eicher B; Heberle FA; Marquardt D; Rechberger GN; Katsaras J; Pabst G
    J Appl Crystallogr; 2017 Apr; 50(Pt 2):419-429. PubMed ID: 28381971
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The rise of FTIR spectroscopy in the characterization of asymmetric lipid membranes.
    Pašalić L; Maleš P; Čikoš A; Pem B; Bakarić D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123488. PubMed ID: 37813090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Peptide-induced asymmetric distribution of charged lipids in a vesicle bilayer revealed by small-angle neutron scattering.
    Qian S; Heller WT
    J Phys Chem B; 2011 Aug; 115(32):9831-7. PubMed ID: 21751797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transbilayer diffusion of phospholipids: dependence on headgroup structure and acyl chain length.
    Homan R; Pownall HJ
    Biochim Biophys Acta; 1988 Feb; 938(2):155-66. PubMed ID: 3342229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.