These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38971613)

  • 1. Using the yeast vacuole as a system to test the lipidic drivers of membrane heterogeneity in living cells.
    Kim H; Juarez-Contreras I; Budin I
    Methods Enzymol; 2024; 700():77-104. PubMed ID: 38971613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular sphingolipid sorting drives membrane phase separation in the yeast vacuole.
    Kim H; Budin I
    J Biol Chem; 2024 Jan; 300(1):105496. PubMed ID: 38013088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid Droplets and Their Autophagic Turnover via the Raft-Like Vacuolar Microdomains.
    Rahman MA; Kumar R; Sanchez E; Nazarko TY
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acyl Coenzyme A Synthetase Fat1p Regulates Vacuolar Structure and Stationary-Phase Lipophagy in Saccharomyces cerevisiae.
    Qiu F; Kang N; Tan J; Yan S; Lin L; Cai L; Goodman JM; Gao Q
    Microbiol Spectr; 2023 Feb; 11(1):e0462522. PubMed ID: 36598223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodeling of yeast vacuole membrane lipidomes from the log (one phase) to stationary stage (two phases).
    Reinhard J; Leveille CL; Cornell CE; Merz AJ; Klose C; Ernst R; Keller SL
    Biophys J; 2023 Mar; 122(6):1043-1057. PubMed ID: 36635960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipids and lipid domains of the yeast vacuole.
    Tsuji T; Fujimoto T
    Biochem Soc Trans; 2018 Oct; 46(5):1047-1054. PubMed ID: 30242116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated quantification of vacuole fusion and lipophagy in
    Egebjerg JM; Szomek M; Thaysen K; Juhl AD; Kozakijevic S; Werner S; Pratsch C; Schneider G; Kapishnikov S; Ekman A; Röttger R; Wüstner D
    Autophagy; 2024 Apr; 20(4):902-922. PubMed ID: 37908116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LDO proteins and Vac8 form a vacuole-lipid droplet contact site to enable starvation-induced lipophagy in yeast.
    Álvarez-Guerra I; Block E; Broeskamp F; Gabrijelčič S; Infant T; de Ory A; Habernig L; Andréasson C; Levine TP; Höög JL; Büttner S
    Dev Cell; 2024 Mar; 59(6):759-775.e5. PubMed ID: 38354739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stationary phase lipophagy as a cellular mechanism to recycle sterols during quiescence.
    Wang CW
    Autophagy; 2014; 10(11):2075-6. PubMed ID: 25484090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress.
    Hariri H; Rogers S; Ugrankar R; Liu YL; Feathers JR; Henne WM
    EMBO Rep; 2018 Jan; 19(1):57-72. PubMed ID: 29146766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane and lipid metabolism plays an important role in desiccation resistance in the yeast Saccharomyces cerevisiae.
    Ren Q; Brenner R; Boothby TC; Zhang Z
    BMC Microbiol; 2020 Nov; 20(1):338. PubMed ID: 33167888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy.
    Ouahoud S; Fiet MD; Martínez-Montañés F; Ejsing CS; Kuss O; Roden M; Markgraf DF
    J Cell Sci; 2018 Jun; 131(11):. PubMed ID: 29678904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast lipids can phase-separate into micrometer-scale membrane domains.
    Klose C; Ejsing CS; García-Sáez AJ; Kaiser HJ; Sampaio JL; Surma MA; Shevchenko A; Schwille P; Simons K
    J Biol Chem; 2010 Sep; 285(39):30224-32. PubMed ID: 20647309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures.
    Leveille CL; Cornell CE; Merz AJ; Keller SL
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35046036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells.
    Tomioku KN; Shigekuni M; Hayashi H; Yoshida A; Futagami T; Tamaki H; Tanabe K; Fujita A
    Eur J Cell Biol; 2018 May; 97(4):269-278. PubMed ID: 29609807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microautophagy in the yeast vacuole depends on the activities of phosphatidylinositol 4-kinases, Stt4p and Pik1p.
    Kurokawa Y; Konishi R; Yoshida A; Tomioku K; Tanabe K; Fujita A
    Biochim Biophys Acta Biomembr; 2020 Nov; 1862(11):183416. PubMed ID: 32726584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast.
    Wang CW; Miao YH; Chang YS
    J Cell Biol; 2014 Aug; 206(3):357-66. PubMed ID: 25070953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation.
    Hurst LR; Fratti RA
    Front Cell Dev Biol; 2020; 8():539. PubMed ID: 32719794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast.
    Cuesta-Marbán Á; Botet J; Czyz O; Cacharro LM; Gajate C; Hornillos V; Delgado J; Zhang H; Amat-Guerri F; Acuña AU; McMaster CR; Revuelta JL; Zaremberg V; Mollinedo F
    J Biol Chem; 2013 Mar; 288(12):8405-8418. PubMed ID: 23335509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole.
    Tsuji T; Fujimoto M; Tatematsu T; Cheng J; Orii M; Takatori S; Fujimoto T
    Elife; 2017 Jun; 6():. PubMed ID: 28590904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.