These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 38971830)

  • 1. Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein.
    Chuang HY; He RY; Huang YA; Hsu WT; Cheng YJ; Guo ZR; Wali N; Hwang IS; Shie JJ; Huang JJ
    Nat Commun; 2024 Jul; 15(1):5686. PubMed ID: 38971830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils.
    Kar M; Posey AE; Dar F; Hyman AA; Pappu RV
    Biochemistry; 2021 Nov; 60(43):3213-3222. PubMed ID: 34648275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squishy to crusty: Biophysics reveal the molecular details of FUS droplet maturation.
    Sohn EJ; Libich DS
    Structure; 2024 Jul; 32(7):854-855. PubMed ID: 38996511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.
    Brumbaugh-Reed EH; Gao Y; Aoki K; Toettcher JE
    Nat Commun; 2024 Aug; 15(1):6717. PubMed ID: 39112465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism underlying liquid-to-solid phase transition in fused in sarcoma liquid droplets.
    Li S; Yoshizawa T; Shiramasa Y; Kanamaru M; Ide F; Kitamura K; Kashiwagi N; Sasahara N; Kitazawa S; Kitahara R
    Phys Chem Chem Phys; 2022 Aug; 24(32):19346-19353. PubMed ID: 35943083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation sites are evolutionary checkpoints against liquid-solid transition in protein condensates.
    Ranganathan S; Dasmeh P; Furniss S; Shakhnovich E
    Proc Natl Acad Sci U S A; 2023 May; 120(20):e2215828120. PubMed ID: 37155880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA modulates hnRNPA1A amyloid formation mediated by biomolecular condensates.
    Morelli C; Faltova L; Capasso Palmiero U; Makasewicz K; Papp M; Jacquat RPB; Pinotsi D; Arosio P
    Nat Chem; 2024 Jul; 16(7):1052-1061. PubMed ID: 38472406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain.
    Lao Z; Dong X; Liu X; Li F; Chen Y; Tang Y; Wei G
    J Chem Inf Model; 2022 Jul; 62(13):3227-3238. PubMed ID: 35709363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on Phase Separation of Fused in Sarcoma by Fluorescence Correlation Spectroscopy.
    Yu W; Liu J; Huang X; Ren J
    Langmuir; 2024 Jan; 40(2):1266-1276. PubMed ID: 38157426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model.
    Benayad Z; von Bülow S; Stelzl LS; Hummer G
    J Chem Theory Comput; 2021 Jan; 17(1):525-537. PubMed ID: 33307683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo designed YK peptides forming reversible amyloid for synthetic protein condensates in mammalian cells.
    Miki T; Hashimoto M; Takahashi H; Shimizu M; Nakayama S; Furuta T; Mihara H
    Nat Commun; 2024 Oct; 15(1):8503. PubMed ID: 39424799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-driven phase transitions in biomolecular condensates.
    Wadsworth GM; Srinivasan S; Lai LB; Datta M; Gopalan V; Banerjee PR
    Mol Cell; 2024 Oct; 84(19):3692-3705. PubMed ID: 39366355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation.
    Ding X; Sun F; Chen J; Chen L; Tobin-Miyaji Y; Xue S; Qiang W; Luo SZ
    J Mol Biol; 2020 Jan; 432(2):467-483. PubMed ID: 31805282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants.
    Kumar A; Chakraborty D; Mugnai ML; Straub JE; Thirumalai D
    J Phys Chem Lett; 2021 Sep; 12(37):9026-9032. PubMed ID: 34516126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of design grammar of peptides for regulating liquid droplets and aggregates of FUS.
    Kamagata K; Chiba R; Kawahata I; Iwaki N; Kanbayashi S; Maeda K; Takahashi H; Hirano A; Fukunaga K; Ikeda K; Kameda T
    Sci Rep; 2021 Mar; 11(1):6643. PubMed ID: 33758287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS.
    Lee M; Ghosh U; Thurber KR; Kato M; Tycko R
    Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Quantum Dots Modulate Stress Granule Assembly and Prevent Abnormal Phase Transition of Fused in Sarcoma Protein.
    Zhang H; Gu J; Zhang Y; Guo H; Zhang S; Song J; Liu C; Wang L; Li D; Dai B
    ACS Nano; 2023 Jun; 17(11):10129-10141. PubMed ID: 37204199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-condensation of proteins with single- and double-stranded DNA.
    Renger R; Morin JA; Lemaitre R; Ruer-Gruss M; Jülicher F; Hermann A; Grill SW
    Proc Natl Acad Sci U S A; 2022 Mar; 119(10):e2107871119. PubMed ID: 35238639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.