BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3897192)

  • 21. Suppressors of lysine codons may be misacylated lysine tRNAs.
    Murgola EJ; Pagel FT
    J Bacteriol; 1983 Nov; 156(2):917-9. PubMed ID: 6415042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid transfer RNA genes in phage T4.
    McClain WH; Foss K
    Cell; 1984 Aug; 38(1):225-31. PubMed ID: 6380760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An anticodon change switches the identity of E. coli tRNA(mMet) from methionine to threonine.
    Schulman LH; Pelka H
    Nucleic Acids Res; 1990 Jan; 18(2):285-9. PubMed ID: 2109304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate recognition by class I lysyl-tRNA synthetases: a molecular basis for gene displacement.
    Ibba M; Losey HC; Kawarabayasi Y; Kikuchi H; Bunjun S; Söll D
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):418-23. PubMed ID: 9892648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Switching tRNA(Gln) identity from glutamine to tryptophan.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of transfer RNA suppressors in Escherichia coli. I. Amber suppressor su+2, an anticodon mutant of tRNA2Gln.
    Inokuchi H; Yamao F; Sakano H; Ozeki H
    J Mol Biol; 1979 Aug; 132(4):649-62. PubMed ID: 160949
    [No Abstract]   [Full Text] [Related]  

  • 27. Precise mapping and comparison of two evolutionarily related regions of the Escherichia coli K-12 chromosome. Evolution of valU and lysT from an ancestral tRNA operon.
    Brun YV; Breton R; Lanouette P; Lapointe J
    J Mol Biol; 1990 Aug; 214(4):825-43. PubMed ID: 2201776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Trp(+) reversions in Escherichia coli strain WP2uvrA.
    Ohta T; Tokishita S; Tsunoi R; Ohmae S; Yamagata H
    Mutagenesis; 2002 Jul; 17(4):313-6. PubMed ID: 12110627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primary structure of an unusual glycine tRNA UGA suppressor.
    Prather NE; Murgola EJ; Mims BH
    Nucleic Acids Res; 1981 Dec; 9(23):6421-8. PubMed ID: 7033934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene.
    Capone JP; Sharp PA; RajBhandary UL
    EMBO J; 1985 Jan; 4(1):213-21. PubMed ID: 2990894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations in the TPsiC loop of E. coli tRNALys,3 have varied effects on in trans complementation of HIV-1 replication.
    Yu W; McCulley A; Morrow CD
    Virol J; 2007 Jan; 4():5. PubMed ID: 17217532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequences of four tRNA genes from Caenorhabditis elegans and the expression of C. elegans tRNALeu (anticodon IAG) in Xenopus oocytes.
    Tranquilla TA; Cortese R; Melton D; Smith JD
    Nucleic Acids Res; 1982 Dec; 10(24):7919-34. PubMed ID: 6761649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insertion (sufB) in the anticodon loop or base substitution (sufC) in the anticodon stem of tRNA(Pro)2 from Salmonella typhimurium induces suppression of frameshift mutations.
    Sroga GE; Nemoto F; Kuchino Y; Björk GR
    Nucleic Acids Res; 1992 Jul; 20(13):3463-9. PubMed ID: 1630916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Missense and nonsense suppressors can correct frameshift mutations.
    Tucker SD; Murgola EJ; Pagel FT
    Biochimie; 1989 Jun; 71(6):729-39. PubMed ID: 2502189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression.
    Vacher J; Grosjean H; Houssier C; Buckingham RH
    J Mol Biol; 1984 Aug; 177(2):329-42. PubMed ID: 6379198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product.
    Johnson PF; Abelson J
    Nature; 1983 Apr; 302(5910):681-7. PubMed ID: 6339954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleotide sequence of pheW; a third gene for E. coli tRNAPhe.
    Wilson RK; Brown T; Roe BA
    Nucleic Acids Res; 1986 Jul; 14(14):5937. PubMed ID: 3526288
    [No Abstract]   [Full Text] [Related]  

  • 38. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency.
    Kleina LG; Masson JM; Normanly J; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):705-17. PubMed ID: 2193162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An amber suppressor tRNA gene derived by site-specific mutagenesis: cloning and function in mammalian cells.
    Laski FA; Belagaje R; RajBhandary UL; Sharp PA
    Proc Natl Acad Sci U S A; 1982 Oct; 79(19):5813-7. PubMed ID: 6310546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleotide insertion in the anticodon loop of a glycine transfer RNA causes missense suppression.
    Prather NE; Murgola EJ; Mims BH
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7408-11. PubMed ID: 7038678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.