These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38971951)
1. Machine learning-based decision support model for selecting intra-arterial therapies for unresectable hepatocellular carcinoma: A national real-world evidence-based study. An C; Wei R; Liu W; Fu Y; Gong X; Li C; Yao W; Zuo M; Li W; Li Y; Wu F; Liu K; Yan D; Wu P; Han J Br J Cancer; 2024 Sep; 131(5):832-842. PubMed ID: 38971951 [TBL] [Abstract][Full Text] [Related]
2. Prognosis prediction and risk stratification of transarterial chemoembolization or intraarterial chemotherapy for unresectable hepatocellular carcinoma based on machine learning. Liu W; Wei R; Chen J; Li Y; Pang H; Zhang W; An C; Li C Eur Radiol; 2024 Aug; 34(8):5094-5107. PubMed ID: 38291256 [TBL] [Abstract][Full Text] [Related]
3. Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma. Dong B; Zhang H; Duan Y; Yao S; Chen Y; Zhang C J Transl Med; 2024 May; 22(1):455. PubMed ID: 38741163 [TBL] [Abstract][Full Text] [Related]
4. Predictive etiological classification of acute ischemic stroke through interpretable machine learning algorithms: a multicenter, prospective cohort study. Chen S; Yang X; Gu H; Wang Y; Xu Z; Jiang Y; Wang Y BMC Med Res Methodol; 2024 Sep; 24(1):199. PubMed ID: 39256656 [TBL] [Abstract][Full Text] [Related]
5. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
6. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
7. Interpretable machine learning based on CT-derived extracellular volume fraction to predict pathological grading of hepatocellular carcinoma. Li J; Zou L; Ma H; Zhao J; Wang C; Li J; Hu G; Yang H; Wang B; Xu D; Xia Y; Jiang Y; Jiang X; Li N Abdom Radiol (NY); 2024 Oct; 49(10):3383-3396. PubMed ID: 38703190 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning to Predict the Response to Lenvatinib Combined with Transarterial Chemoembolization for Unresectable Hepatocellular Carcinoma. Ma J; Bo Z; Zhao Z; Yang J; Yang Y; Li H; Yang Y; Wang J; Su Q; Wang J; Chen K; Yu Z; Wang Y; Chen G Cancers (Basel); 2023 Jan; 15(3):. PubMed ID: 36765583 [TBL] [Abstract][Full Text] [Related]
9. Validation of the Hong Kong Liver Cancer Staging System in Determining Prognosis of the North American Patients Following Intra-arterial Therapy. Sohn JH; Duran R; Zhao Y; Fleckenstein F; Chapiro J; Sahu S; Schernthaner RE; Qian T; Lee H; Zhao L; Hamilton J; Frangakis C; Lin M; Salem R; Geschwind JF Clin Gastroenterol Hepatol; 2017 May; 15(5):746-755.e4. PubMed ID: 27847278 [TBL] [Abstract][Full Text] [Related]
10. Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma. Shi ZX; Li CF; Zhao LF; Sun ZQ; Cui LM; Xin YJ; Wang DQ; Kang TR; Jiang HJ Hepatobiliary Pancreat Dis Int; 2024 Aug; 23(4):361-369. PubMed ID: 37429785 [TBL] [Abstract][Full Text] [Related]
11. A Machine Learning Algorithm Facilitates Prognosis Prediction and Treatment Selection for Barcelona Clinic Liver Cancer Stage C Hepatocellular Carcinoma. Han JW; Lee SK; Kwon JH; Nam SW; Yang H; Bae SH; Kim JH; Nam H; Kim CW; Lee HL; Kim HY; Lee SW; Lee A; Chang UI; Song DS; Kim SH; Song MJ; Sung PS; Choi JY; Yoon SK; Jang JW Clin Cancer Res; 2024 Jul; 30(13):2812-2821. PubMed ID: 38639918 [TBL] [Abstract][Full Text] [Related]
12. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning-An Artificial Intelligence Concept. Abajian A; Murali N; Savic LJ; Laage-Gaupp FM; Nezami N; Duncan JS; Schlachter T; Lin M; Geschwind JF; Chapiro J J Vasc Interv Radiol; 2018 Jun; 29(6):850-857.e1. PubMed ID: 29548875 [TBL] [Abstract][Full Text] [Related]
13. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound. Liu D; Liu F; Xie X; Su L; Liu M; Xie X; Kuang M; Huang G; Wang Y; Zhou H; Wang K; Lin M; Tian J Eur Radiol; 2020 Apr; 30(4):2365-2376. PubMed ID: 31900703 [TBL] [Abstract][Full Text] [Related]
14. Validation and evaluation of clinical prediction systems for first and repeated transarterial chemoembolization in unresectable hepatocellular carcinoma: A Chinese multicenter retrospective study. Wang ZX; Wang EX; Bai W; Xia DD; Mu W; Li J; Yang QY; Huang M; Xu GH; Sun JH; Li HL; Zhao H; Wu JB; Yang SF; Li JP; Li ZX; Zhang CQ; Zhu XL; Zheng YB; Wang QH; Li J; Yuan J; Li XM; Niu J; Yin ZX; Xia JL; Fan DM; Han GH; On Behalf Of China Hcc-Tace Study Group World J Gastroenterol; 2020 Feb; 26(6):657-669. PubMed ID: 32103874 [TBL] [Abstract][Full Text] [Related]
15. A differential risk assessment and decision model for Transarterial chemoembolization in hepatocellular carcinoma based on hepatic function. Nam JY; Choe AR; Sinn DH; Lee JH; Kim HY; Yu SJ; Kim YJ; Yoon JH; Lee JM; Chung JW; Choi SY; Lee JK; Baek SY; Lee HA; Kim TH; Yoo K BMC Cancer; 2020 Jun; 20(1):504. PubMed ID: 32487089 [TBL] [Abstract][Full Text] [Related]
16. An interpretable machine learning model based on contrast-enhanced CT parameters for predicting treatment response to conventional transarterial chemoembolization in patients with hepatocellular carcinoma. Zhang L; Jin Z; Li C; He Z; Zhang B; Chen Q; You J; Ma X; Shen H; Wang F; Wu L; Ma C; Zhang S Radiol Med; 2024 Mar; 129(3):353-367. PubMed ID: 38353864 [TBL] [Abstract][Full Text] [Related]
17. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy. Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668 [TBL] [Abstract][Full Text] [Related]
18. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. Huang C; Murugiah K; Mahajan S; Li SX; Dhruva SS; Haimovich JS; Wang Y; Schulz WL; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM PLoS Med; 2018 Nov; 15(11):e1002703. PubMed ID: 30481186 [TBL] [Abstract][Full Text] [Related]
20. Transarterial chemoembolization for hepatocellular carcinoma: development and external validation of the Munich-TACE score. Op den Winkel M; Nagel D; Op den Winkel P; Trojan J; Paprottka PM; Steib CJ; Schmidt L; Göller M; Stieber P; Göhring P; Herbst A; Rentsch M; De Toni EN; Göke B; Gerbes AL; Kolligs FT Eur J Gastroenterol Hepatol; 2018 Jan; 30(1):44-53. PubMed ID: 29076939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]