These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 3897202)

  • 1. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.
    Shaibe E; Metzer E; Halpern YS
    J Bacteriol; 1985 Sep; 163(3):938-42. PubMed ID: 3897202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12.
    Shaibe E; Metzer E; Halpern YS
    J Bacteriol; 1985 Sep; 163(3):933-7. PubMed ID: 3897201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catabolism of L-arginine by Pseudomonas aeruginosa.
    Mercenier A; Simon JP; Haas D; Stalon V
    J Gen Microbiol; 1980 Feb; 116(2):381-9. PubMed ID: 6768836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter.
    Driessen AJ; Smid EJ; Konings WN
    J Bacteriol; 1988 Oct; 170(10):4522-7. PubMed ID: 3139630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of polyamines in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase deletion mutants of Escherichia coli strain K-12.
    Panagiotidis CA; Blackburn S; Low KB; Canellakis ES
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4423-7. PubMed ID: 2440022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic transcriptional regulation of the putrescine biosynthetic enzyme agmatine ureohydrolase by cyclic AMP and agmatine in Escherichia coli.
    Satishchandran C; Boyle SM
    J Bacteriol; 1984 Feb; 157(2):552-9. PubMed ID: 6319366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymes of agmatine degradation and the control of their synthesis in Klebsiella aerogenes.
    Friedrich B; Magasanik B
    J Bacteriol; 1979 Mar; 137(3):1127-33. PubMed ID: 35512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putrescine biosynthesis in mammalian tissues.
    Coleman CS; Hu G; Pegg AE
    Biochem J; 2004 May; 379(Pt 3):849-55. PubMed ID: 14763899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of conditionally putrescine-deficient mutants of Escherichia coli.
    Morris DR; Jorstad CM
    J Bacteriol; 1970 Mar; 101(3):731-7. PubMed ID: 4908781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of agmatine pathway for putrescine synthesis in Selenomonas ruminatium.
    Liao S; Poonpairoj P; Ko KC; Takatuska Y; Yamaguchi Y; Abe N; Kaneko J; Kamio Y
    Biosci Biotechnol Biochem; 2008 Feb; 72(2):445-55. PubMed ID: 18256468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine.
    Hirshfield IN; Rosenfeld HJ; Leifer Z; Maas WK
    J Bacteriol; 1970 Mar; 101(3):725-30. PubMed ID: 4908780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis.
    Simon JP; Stalon V
    J Bacteriol; 1982 Nov; 152(2):676-81. PubMed ID: 6290446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putrescine Biosynthesis from Agmatine by Arginase (TtARG) in Thermus thermophilus.
    Kobayashi T; Sakamoto A; Kashiwagi K; Igarashi K; Takao K; Uemura T; Moriya T; Oshima T; Terui Y
    J Biochem; 2023 Jun; 174(1):81-88. PubMed ID: 37001547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase.
    Cunningham-Rundles S; Maas WK
    J Bacteriol; 1975 Nov; 124(2):791-9. PubMed ID: 1102531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Putrescine biosynthesis in Tetrahymena thermophila.
    Yao KM; Fong WF; Ng SF
    Biochem J; 1984 Sep; 222(3):679-84. PubMed ID: 6435604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenic amine production by Lactobacillus.
    Arena ME; Manca de Nadra MC
    J Appl Microbiol; 2001 Feb; 90(2):158-62. PubMed ID: 11168717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of agmatine in Streptococcus faecalis: occurrence of putrescine transcarbamoylase.
    Roon RJ; Barker HA
    J Bacteriol; 1972 Jan; 109(1):44-50. PubMed ID: 4621632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamines in Trypanosoma cruzi.
    Schwarcz de Tarlovsky MN; Hernandez SM; Bedoya AM; Lammel EM; Isola EL
    Biochem Mol Biol Int; 1993 Jul; 30(3):547-58. PubMed ID: 8401312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activities and properties of putrescine-biosynthetic enzymes in Vibrio parahaemolyticus.
    Yamamoto S; Nakao H; Yamasaki K; Takashina K; Suemoto Y; Shinoda S
    Microbiol Immunol; 1988; 32(7):675-87. PubMed ID: 3193911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insight into the transcarbamylase family: the structure of putrescine transcarbamylase, a key catalyst for fermentative utilization of agmatine.
    Polo LM; Gil-Ortiz F; Cantín A; Rubio V
    PLoS One; 2012; 7(2):e31528. PubMed ID: 22363663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.