These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38972032)

  • 21. sAMP-VGG16: Force-field assisted image-based deep neural network prediction model for short antimicrobial peptides.
    Pandey P; Srivastava A
    Proteins; 2024 Mar; ():. PubMed ID: 38520179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LMPred: predicting antimicrobial peptides using pre-trained language models and deep learning.
    Dee W
    Bioinform Adv; 2022; 2(1):vbac021. PubMed ID: 36699381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides.
    Zhou W; Liu Y; Li Y; Kong S; Wang W; Ding B; Han J; Mou C; Gao X; Liu J
    Patterns (N Y); 2023 Mar; 4(3):100702. PubMed ID: 36960450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PredAPP: Predicting Anti-Parasitic Peptides with Undersampling and Ensemble Approaches.
    Zhang W; Xia E; Dai R; Tang W; Bin Y; Xia J
    Interdiscip Sci; 2022 Mar; 14(1):258-268. PubMed ID: 34608613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using an Ensemble to Identify and Classify Macroalgae Antimicrobial Peptides.
    Caprani MC; Healy J; Slattery O; O'Keeffe J
    Interdiscip Sci; 2021 Jun; 13(2):321-333. PubMed ID: 33978916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macrel: antimicrobial peptide screening in genomes and metagenomes.
    Santos-JĂșnior CD; Pan S; Zhao XM; Coelho LP
    PeerJ; 2020; 8():e10555. PubMed ID: 33384902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.
    Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP
    Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques.
    Khabbaz H; Karimi-Jafari MH; Saboury AA; BabaAli B
    BMC Bioinformatics; 2021 Nov; 22(1):549. PubMed ID: 34758751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AGRAMP: machine learning models for predicting antimicrobial peptides against phytopathogenic bacteria.
    Shao J; Zhao Y; Wei W; Vaisman II
    Front Microbiol; 2024; 15():1304044. PubMed ID: 38516021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding.
    Fu H; Cao Z; Li M; Wang S
    BMC Genomics; 2020 Aug; 21(1):597. PubMed ID: 32859150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides.
    Wani MA; Garg P; Roy KK
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2397-2408. PubMed ID: 34632545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning.
    Yan J; Cai J; Zhang B; Wang Y; Wong DF; Siu SWI
    Antibiotics (Basel); 2022 Oct; 11(10):. PubMed ID: 36290108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction.
    Vishnepolsky B; Grigolava M; Managadze G; Gabrielian A; Rosenthal A; Hurt DE; Tartakovsky M; Pirtskhalava M
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35724561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.