These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38972040)

  • 1. Protocol for establishing knockout cell clones by deletion of a large gene fragment using CRISPR-Cas9 with multiple guide RNAs.
    Saito AC; Higashi T; Chiba H
    STAR Protoc; 2024 Sep; 5(3):103179. PubMed ID: 38972040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR deactivation in mammalian cells using photocleavable guide RNAs.
    Zou RS; Liu Y; Ha T
    STAR Protoc; 2021 Dec; 2(4):100909. PubMed ID: 34746867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robust Protocol for CRISPR-Cas9 Gene Editing in Human Suspension Cell Lines.
    Wardyn JD; Chan ASY; Jeyasekharan AD
    Curr Protoc; 2021 Nov; 1(11):e286. PubMed ID: 34748280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple protocol to isolate a single human cell PRDX1 knockout generated by CRISPR-Cas9 system.
    Aouida M; Aljogol D; Ali R; Ramotar D
    STAR Protoc; 2022 Mar; 3(1):101216. PubMed ID: 35284843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical-genetic CRISPR-Cas9 screens in human cells using a pathway-specific library.
    Hundley FV; Toczyski DP
    STAR Protoc; 2021 Sep; 2(3):100685. PubMed ID: 34382013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized protocol to create deletion in adherent cell lines using CRISPR/Cas9 system.
    Farooq U; Notani D
    STAR Protoc; 2021 Dec; 2(4):100857. PubMed ID: 34746853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized protocol for gene editing in adipocytes using CRISPR-Cas9 technology.
    Qiu Y; Ding Q
    STAR Protoc; 2021 Mar; 2(1):100307. PubMed ID: 33554142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and Efficient Gene Deletion by CRISPR/Cas9.
    Neldeborg S; Lin L; Stougaard M; Luo Y
    Methods Mol Biol; 2019; 1961():233-247. PubMed ID: 30912049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for arrayed gRNA screening by base editors in mammalian cell lines using lentiviral system.
    Ravi NS; George A; Mohankumar KM
    STAR Protoc; 2023 Dec; 4(4):102668. PubMed ID: 37922314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating mutant
    Li HH; Li JC; Su MP; Liu KL; Chen CH
    STAR Protoc; 2021 Jun; 2(2):100432. PubMed ID: 33899015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ASSURED-optimized CRISPR protocol for knockout/SNP knockin in hiPSCs.
    Ludwik KA; Telugu N; Schommer S; Stachelscheid H; Diecke S
    STAR Protoc; 2023 Sep; 4(3):102406. PubMed ID: 37481731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9-Mediated Genomic Deletions Protocol in Zebrafish.
    Amorim JP; Bordeira-Carriço R; Gali-Macedo A; Perrod C; Bessa J
    STAR Protoc; 2020 Dec; 1(3):100208. PubMed ID: 33377102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 editing of synaptic genes in human embryonic stem cells for functional analysis in induced human neurons.
    Houcek A; Ma ZZ; Trauterman B; Uzay B; Monteggia LM; Kavalali ET
    STAR Protoc; 2024 Jun; 5(2):103089. PubMed ID: 38795356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for establishing inducible CRISPR interference system for multiple-gene silencing in human pluripotent stem cells.
    Matsui S; Shiley JR; Granitto M; Ludwig K; Buckley M; Koigi S; Mirizio G; Hu YC; Mayhew CN; Iwafuchi M
    STAR Protoc; 2024 Sep; 5(3):103221. PubMed ID: 39083383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for efficient CRISPR-Cas9-mediated fluorescent tag knockin in hard-to-transfect erythroid cell lines.
    Deleuze V; Soler E; Andrieu-Soler C
    STAR Protoc; 2024 Jun; 5(2):103016. PubMed ID: 38640065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guide for generating single-cell-derived knockout clones in mammalian cell lines using the CRISPR/Cas9 system.
    Hong T; Bae SM; Song G; Lim W
    Mol Cells; 2024 Jul; 47(7):100087. PubMed ID: 38936509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method using CRISPR-Cas9 to knock-out genes in murine cancerous cell lines.
    Ishibashi A; Saga K; Hisatomi Y; Li Y; Kaneda Y; Nimura K
    Sci Rep; 2020 Dec; 10(1):22345. PubMed ID: 33339985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A protocol for custom CRISPR Cas9 donor vector construction to truncate genes in mammalian cells using pcDNA3 backbone.
    Vazquez N; Sanchez L; Marks R; Martinez E; Fanniel V; Lopez A; Salinas A; Flores I; Hirschmann J; Gilkerson R; Schuenzel E; Dearth R; Halaby R; Innis-Whitehouse W; Keniry M
    BMC Mol Biol; 2018 Mar; 19(1):3. PubMed ID: 29540148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of CRISPR-Cas9-mediated genetic knockout human intestinal tissue-derived enteroid lines by lentivirus transduction and single-cell cloning.
    Lin SC; Haga K; Zeng XL; Estes MK
    Nat Protoc; 2022 Apr; 17(4):1004-1027. PubMed ID: 35197604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.