These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38972274)

  • 21. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing dynamic balance during adaptive locomotor learning.
    Park S; Finley JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():50-53. PubMed ID: 29059808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive Control of Dynamic Balance across the Adult Lifespan.
    Vervoort D; Buurke TJW; Vuillerme N; Hortobágyi T; DEN Otter R; Lamoth CJC
    Med Sci Sports Exerc; 2020 Oct; 52(10):2270-2277. PubMed ID: 32301854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial and Temporal Control Contribute to Step Length Asymmetry During Split-Belt Adaptation and Hemiparetic Gait.
    Finley JM; Long A; Bastian AJ; Torres-Oviedo G
    Neurorehabil Neural Repair; 2015 Sep; 29(8):786-95. PubMed ID: 25589580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Step length symmetry adaptation to split-belt treadmill walking after acquired non-traumatic transtibial amputation.
    Kline PW; Murray AM; Miller MJ; So N; Fields T; Christiansen CL
    Gait Posture; 2020 Jul; 80():162-167. PubMed ID: 32516682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The differences in sagittal plane whole-body angular momentum during gait between patients with hemiparesis and healthy people.
    Honda K; Sekiguchi Y; Muraki T; Izumi SI
    J Biomech; 2019 Mar; 86():204-209. PubMed ID: 30827701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using Biofeedback to Reduce Step Length Asymmetry Impairs Dynamic Balance in People Poststroke.
    Park S; Liu C; Sánchez N; Tilson JK; Mulroy SJ; Finley JM
    Neurorehabil Neural Repair; 2021 Aug; 35(8):738-749. PubMed ID: 34060926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of aging on the control of the whole-body angular momentum during volitional stepping: An UCM-based analysis.
    Caderby T; Lesport A; Turpin NA; Dalleau G; Watier B; Robert T; Peyrot N; Begue J
    Exp Gerontol; 2023 Jul; 178():112217. PubMed ID: 37224932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation.
    Altman AR; Reisman DS; Higginson JS; Davis IS
    Gait Posture; 2012 Feb; 35(2):287-91. PubMed ID: 22015048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial and temporal asymmetries in gait predict split-belt adaptation behavior in stroke.
    Malone LA; Bastian AJ
    Neurorehabil Neural Repair; 2014; 28(3):230-40. PubMed ID: 24243917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adapting gait with asymmetric visual feedback affects deadaptation but not adaptation in healthy young adults.
    Brinkerhoff SA; Monaghan PG; Roper JA
    PLoS One; 2021; 16(2):e0247706. PubMed ID: 33630934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A more symmetrical gait after split-belt treadmill walking increases the effort in paretic plantar flexors in people post-stroke.
    Lauzière S; Miéville C; Betschart M; Duclos C; Aissaoui R; Nadeau S
    J Rehabil Med; 2016 Jul; 48(7):576-82. PubMed ID: 27345026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of sagittal-plane whole-body angular momentum during perturbed and unperturbed gait using simplified body models.
    Zhang J; van Mierlo M; Veltink PH; van Asseldonk EHF
    Hum Mov Sci; 2024 Feb; 93():103179. PubMed ID: 38244350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordinative structuring of gait kinematics during adaptation to variable and asymmetric split-belt treadmill walking - A principal component analysis approach.
    Hinkel-Lipsker JW; Hahn ME
    Hum Mov Sci; 2018 Jun; 59():178-192. PubMed ID: 29704789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of step width on balance control and response strategies during perturbed walking in healthy young adults.
    Molina LK; Small GH; Neptune RR
    J Biomech; 2023 Aug; 157():111731. PubMed ID: 37494856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Everyday multitasking habits: University students seamlessly text and walk on a split-belt treadmill.
    Hinton DC; Cheng YY; Paquette C
    Gait Posture; 2018 Jan; 59():168-173. PubMed ID: 29032000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impairments in the mechanical effectiveness of reactive balance control strategies during walking in people post-stroke.
    Liu C; McNitt-Gray JL; Finley JM
    Front Neurol; 2022; 13():1032417. PubMed ID: 36388197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive changes in foot placement for split-belt treadmill walking in individuals with stroke.
    Hirata K; Hanawa H; Miyazawa T; Kubota K; Sonoo M; Kokubun T; Kanemura N
    J Electromyogr Kinesiol; 2019 Oct; 48():112-120. PubMed ID: 31325672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.