These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38972521)

  • 21. Perspectives on 3D printed personalized medicines for pediatrics.
    Tong H; Zhang J; Ma J; Zhang J
    Int J Pharm; 2024 Mar; 653():123867. PubMed ID: 38310991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications.
    Charoo NA; Barakh Ali SF; Mohamed EM; Kuttolamadom MA; Ozkan T; Khan MA; Rahman Z
    Drug Dev Ind Pharm; 2020 Jun; 46(6):869-877. PubMed ID: 32364418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Releasing fast and slow: Non-destructive prediction of density and drug release from SLS 3D printed tablets using NIR spectroscopy.
    Trenfield SJ; Xu X; Goyanes A; Rowland M; Wilsdon D; Gaisford S; Basit AW
    Int J Pharm X; 2023 Dec; 5():100148. PubMed ID: 36590827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks.
    Trenfield SJ; Xian Tan H; Awad A; Buanz A; Gaisford S; Basit AW; Goyanes A
    Int J Pharm; 2019 Aug; 567():118443. PubMed ID: 31212052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional drug printing: a structured review.
    Ursan ID; Chiu L; Pierce A
    J Am Pharm Assoc (2003); 2013; 53(2):136-44. PubMed ID: 23571620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning predicts 3D printing performance of over 900 drug delivery systems.
    Muñiz Castro B; Elbadawi M; Ong JJ; Pollard T; Song Z; Gaisford S; Pérez G; Basit AW; Cabalar P; Goyanes A
    J Control Release; 2021 Sep; 337():530-545. PubMed ID: 34339755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges.
    Alhnan MA; Okwuosa TC; Sadia M; Wan KW; Ahmed W; Arafat B
    Pharm Res; 2016 Aug; 33(8):1817-32. PubMed ID: 27194002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting pharmaceutical inkjet printing outcomes using machine learning.
    Carou-Senra P; Ong JJ; Castro BM; Seoane-Viaño I; Rodríguez-Pombo L; Cabalar P; Alvarez-Lorenzo C; Basit AW; Pérez G; Goyanes A
    Int J Pharm X; 2023 Dec; 5():100181. PubMed ID: 37143957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printing Technology: A New Milestone in the Development of Pharmaceuticals.
    Chandekar A; Mishra DK; Sharma S; Saraogi GK; Gupta U; Gupta G
    Curr Pharm Des; 2019; 25(9):937-945. PubMed ID: 31339069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Printable Drug Delivery Systems: Next-generation Healthcare Technology and Regulatory Aspects.
    Saxena A; Malviya R
    Curr Pharm Des; 2023; 29(35):2814-2826. PubMed ID: 38018197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the effects of formulation and process variables on the printlets quality manufactured by selective laser sintering 3D printing.
    Barakh Ali SF; Mohamed EM; Ozkan T; Kuttolamadom MA; Khan MA; Asadi A; Rahman Z
    Int J Pharm; 2019 Oct; 570():118651. PubMed ID: 31493496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder.
    Infanger S; Haemmerli A; Iliev S; Baier A; Stoyanov E; Quodbach J
    Int J Pharm; 2019 Jan; 555():198-206. PubMed ID: 30458260
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems.
    Vithani K; Goyanes A; Jannin V; Basit AW; Gaisford S; Boyd BJ
    Pharm Res; 2018 Nov; 36(1):4. PubMed ID: 30406349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of oral solid dosage forms based on homogenized spot melting technique.
    Wei S; Shen L; Xu X; Shan W; Yang Y
    Int J Pharm; 2022 Jul; 623():121928. PubMed ID: 35718250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmaceutical Additive Manufacturing: a Novel Tool for Complex and Personalized Drug Delivery Systems.
    Zhang J; Vo AQ; Feng X; Bandari S; Repka MA
    AAPS PharmSciTech; 2018 Nov; 19(8):3388-3402. PubMed ID: 29943281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an immediate release excipient composition for 3D printing via direct powder extrusion in a hospital.
    Rosch M; Gutowski T; Baehr M; Eggert J; Gottfried K; Gundler C; Nürnberg S; Langebrake C; Dadkhah A
    Int J Pharm; 2023 Aug; 643():123218. PubMed ID: 37467818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(3-hydroxybutyrate): A potential biodegradable excipient for direct 3D printing of pharmaceuticals.
    Moroni S; Khorshid S; Aluigi A; Tiboni M; Casettari L
    Int J Pharm; 2022 Jul; 623():121960. PubMed ID: 35753539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printing Methods for Pharmaceutical Manufacturing: Opportunity and Challenges.
    Warsi MH; Yusuf M; Al Robaian M; Khan M; Muheem A; Khan S
    Curr Pharm Des; 2018; 24(42):4949-4956. PubMed ID: 30520367
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binder jetting 3D printing in fabricating pharmaceutical solid products for precision medicine.
    Wang Y; Genina N; Müllertz A; Rantanen J
    Basic Clin Pharmacol Toxicol; 2024 Mar; 134(3):325-332. PubMed ID: 38105694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process.
    Goyanes A; Allahham N; Trenfield SJ; Stoyanov E; Gaisford S; Basit AW
    Int J Pharm; 2019 Aug; 567():118471. PubMed ID: 31252147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.