These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38972633)

  • 1. Evolution and development of Drosophila melanogaster under different thermal conditions affected cell sizes and sensitivity to paralyzing hypoxia.
    Szabla N; Maria Labecka A; Antoł A; Sobczyk Ł; Angilletta MJ; Czarnoleski M
    J Insect Physiol; 2024 Sep; 157():104671. PubMed ID: 38972633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster.
    Heinrich EC; Farzin M; Klok CJ; Harrison JF
    J Exp Biol; 2011 May; 214(Pt 9):1419-27. PubMed ID: 21490250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen and temperature affect cell sizes differently among tissues and between sexes of Drosophila melanogaster.
    Czarnoleski M; Szlachcic E; Privalova V; Maria Labecka A; Sikorska A; Sobczyk Ł; VandenBrooks J; Angilletta MJ
    J Insect Physiol; 2023 Nov; 150():104559. PubMed ID: 37640139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of developmental plasticity on heat tolerance may be mediated by changes in cell size in Drosophila melanogaster.
    Verspagen N; Leiva FP; Janssen IM; Verberk WCEP
    Insect Sci; 2020 Dec; 27(6):1244-1256. PubMed ID: 31829515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flies developed small bodies and small cells in warm and in thermally fluctuating environments.
    Czarnoleski M; Cooper BS; Kierat J; Angilletta MJ
    J Exp Biol; 2013 Aug; 216(Pt 15):2896-901. PubMed ID: 23619414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flies evolved small bodies and cells at high or fluctuating temperatures.
    Adrian GJ; Czarnoleski M; Angilletta MJ
    Ecol Evol; 2016 Nov; 6(22):7991-7996. PubMed ID: 27878071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flies developed smaller cells when temperature fluctuated more frequently.
    Czarnoleski M; Dragosz-Kluska D; Angilletta MJ
    J Therm Biol; 2015 Dec; 54():106-10. PubMed ID: 26615732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in
    Yerushalmi GY; Misyura L; MacMillan HA; Donini A
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis.
    Angilletta MJ; Condon C; Youngblood JP
    J Therm Biol; 2019 Apr; 81():25-32. PubMed ID: 30975420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental plasticity evolved according to specialist-generalist trade-offs in experimental populations of Drosophila melanogaster.
    Le Vinh Thuy J; VandenBrooks JM; Angilletta MJ
    Biol Lett; 2016 Jul; 12(7):. PubMed ID: 27405382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic plasticity of body size in a temperate population of Drosophila melanogaster: when the temperature-size rule does not apply.
    David JR; Legout H; Moreteau B
    J Genet; 2006 Apr; 85(1):9-23. PubMed ID: 16809835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster.
    Huisamen EJ; Colinet H; Karsten M; Terblanche JS
    J Insect Physiol; 2022 Jul; 140():104403. PubMed ID: 35667397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal and Oxygen Flight Sensitivity in Ageing
    Szlachcic E; Czarnoleski M
    Biology (Basel); 2021 Sep; 10(9):. PubMed ID: 34571738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster.
    Alton LA; Condon C; White CR; Angilletta MJ
    Evolution; 2017 Jan; 71(1):145-152. PubMed ID: 27757954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations.
    Trotta V; Calboli FC; Ziosi M; Guerra D; Pezzoli MC; David JR; Cavicchi S
    BMC Evol Biol; 2006 Aug; 6():67. PubMed ID: 16942614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.
    Torquato LS; Mattos D; Matta BP; Bitner-Mathé BC
    Genetica; 2014 Dec; 142(6):495-505. PubMed ID: 25326715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster.
    Frazier MR; Woods HA; Harrison JF
    Physiol Biochem Zool; 2001; 74(5):641-50. PubMed ID: 11517449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures.
    Gilchrist GW; Huey RB; Partridge L
    Physiol Zool; 1997; 70(4):403-14. PubMed ID: 9237300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.