These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38972896)

  • 1. HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics.
    Yuan X; Ma Y; Gao R; Cui S; Wang Y; Fa B; Ma S; Wei T; Ma S; Yu Z
    Nat Commun; 2024 Jul; 15(1):5700. PubMed ID: 38972896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SINFONIA: Scalable Identification of Spatially Variable Genes for Deciphering Spatial Domains.
    Jiang R; Li Z; Jia Y; Li S; Chen S
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scBSP: A fast and accurate tool for identifying spatially variable genes from spatial transcriptomic data.
    Li J; Wang Y; Raina MA; Xu C; Su L; Guo Q; Ma Q; Wang J; Xu D
    bioRxiv; 2024 May; ():. PubMed ID: 38765956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimension-agnostic and granularity-based spatially variable gene identification using BSP.
    Wang J; Li J; Kramer ST; Su L; Chang Y; Xu C; Eadon MT; Kiryluk K; Ma Q; Xu D
    Nat Commun; 2023 Nov; 14(1):7367. PubMed ID: 37963892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating spatially variable gene detection methods for spatial transcriptomics data.
    Chen C; Kim HJ; Yang P
    Genome Biol; 2024 Jan; 25(1):18. PubMed ID: 38225676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes.
    Meng-Lin K; Ung CY; Zhang C; Weiskittel TM; Wisniewski P; Zhang Z; Tan SH; Yeo KS; Zhu S; Correia C; Li H
    Biomolecules; 2023 May; 13(6):. PubMed ID: 37371475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-view graph contrastive learning framework for deciphering spatially resolved transcriptomics data.
    Zhang L; Liang S; Wan L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38801701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete spatially resolved gene expression is not necessary for identifying spatial domains.
    Lin S; Cui Y; Zhao F; Yang Z; Song J; Yao J; Zhao Y; Qian BZ; Zhao Y; Yuan Z
    Cell Genom; 2024 Jun; 4(6):100565. PubMed ID: 38781966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster.
    Wang T; Shu H; Hu J; Wang Y; Chen J; Peng J; Shang X
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data.
    Chakrabarti A; Ni Y; Mallick BK
    Sci Rep; 2024 Apr; 14(1):9516. PubMed ID: 38664448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks.
    Baul S; Tanvir Ahmed K; Jiang Q; Wang G; Li Q; Yong J; Zhang W
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disparities in spatially variable gene calling highlight the need for benchmarking spatial transcriptomics methods.
    Charitakis N; Salim A; Piers AT; Watt KI; Porrello ER; Elliott DA; Ramialison M
    Genome Biol; 2023 Sep; 24(1):209. PubMed ID: 37723583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data.
    Seal S; Bitler BG; Ghosh D
    PLoS Genet; 2023 Oct; 19(10):e1010983. PubMed ID: 37862362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimension-agnostic and granularity-based spatially variable gene identification.
    Wang J; Li J; Kramer S; Su L; Chang Y; Xu C; Ma Q; Xu D
    Res Sq; 2023 Mar; ():. PubMed ID: 36993309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimension-agnostic and granularity-based spatially variable gene identification.
    Wang J; Li J; Kramer ST; Su L; Chang Y; Xu C; Ma Q; Xu D
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics.
    Liang Y; Shi G; Cai R; Yuan Y; Xie Z; Yu L; Huang Y; Shi Q; Wang L; Li J; Tang Z
    Nat Commun; 2024 Jan; 15(1):600. PubMed ID: 38238417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CROST: a comprehensive repository of spatial transcriptomics.
    Wang G; Wu S; Xiong Z; Qu H; Fang X; Bao Y
    Nucleic Acids Res; 2024 Jan; 52(D1):D882-D890. PubMed ID: 37791883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.