These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38972896)

  • 21. HyperGCN: an effective deep representation learning framework for the integrative analysis of spatial transcriptomics data.
    Ma Y; Liu L; Zhao Y; Hang B; Zhang Y
    BMC Genomics; 2024 Jun; 25(1):566. PubMed ID: 38840049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in spatially variable gene detection in spatial transcriptomics.
    Das Adhikari S; Yang J; Wang J; Cui Y
    Comput Struct Biotechnol J; 2024 Dec; 23():883-891. PubMed ID: 38370977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DESpace: spatially variable gene detection via differential expression testing of spatial clusters.
    Cai P; Robinson MD; Tiberi S
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulating multiple variability in spatially resolved transcriptomics with scCube.
    Qian J; Bao H; Shao X; Fang Y; Liao J; Chen Z; Li C; Guo W; Hu Y; Li A; Yao Y; Fan X; Cheng Y
    Nat Commun; 2024 Jun; 15(1):5021. PubMed ID: 38866768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A SELECTIVE REVIEW OF RECENT DEVELOPMENTS IN SPATIALLY VARIABLE GENE DETECTION FOR SPATIAL TRANSCRIPTOMICS.
    Adhikari SD; Yang J; Wang J; Cui Y
    ArXiv; 2023 Nov; ():. PubMed ID: 38045476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate Identification of Spatial Domain by Incorporating Global Spatial Proximity and Local Expression Proximity.
    Yu Y; He Y; Xie Z
    Biomolecules; 2024 Jun; 14(6):. PubMed ID: 38927077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network.
    Si Z; Li H; Shang W; Zhao Y; Kong L; Long C; Zuo Y; Feng Z
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38811360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. HCCDB v2.0: Decompose Expression Variations by Single-cell RNA-seq and Spatial Transcriptomics in HCC.
    Jiang Z; Wu Y; Miao Y; Deng K; Yang F; Xu S; Wang Y; You R; Zhang L; Fan Y; Guo W; Lian Q; Chen L; Zhang X; Zheng Y; Gu J
    Genomics Proteomics Bioinformatics; 2024 May; 22(1):. PubMed ID: 38886186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation.
    Duan Z; Riffle D; Li R; Liu J; Min MR; Zhang J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38806165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in spatial transcriptomics and its applications in cancer research.
    Jin Y; Zuo Y; Li G; Liu W; Pan Y; Fan T; Fu X; Yao X; Peng Y
    Mol Cancer; 2024 Jun; 23(1):129. PubMed ID: 38902727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics.
    Fang Z; Liu T; Zheng R; A J; Yin M; Li M
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes.
    Yang Y; Shi X; Liu W; Zhou Q; Chan Lau M; Chun Tatt Lim J; Sun L; Ng CCY; Yeong J; Liu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of expression patterns in the progression of disease stages by integration of transcriptomic data.
    Aibar S; Abaigar M; Campos-Laborie FJ; Sánchez-Santos JM; Hernandez-Rivas JM; De Las Rivas J
    BMC Bioinformatics; 2016 Nov; 17(Suppl 15):432. PubMed ID: 28185568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SOMDE: a scalable method for identifying spatially variable genes with self-organizing map.
    Hao M; Hua K; Zhang X
    Bioinformatics; 2021 Dec; 37(23):4392-4398. PubMed ID: 34165490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Bayesian modified Ising model for identifying spatially variable genes from spatial transcriptomics data.
    Jiang X; Xiao G; Li Q
    Stat Med; 2022 Oct; 41(23):4647-4665. PubMed ID: 35871762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. STEEL enables high-resolution delineation of spatiotemporal transcriptomic data.
    Chen Y; Zhou S; Li M; Zhao F; Qi J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics.
    Rahimi A; Vale-Silva LA; Fälth Savitski M; Tanevski J; Saez-Rodriguez J
    Nat Commun; 2024 Jun; 15(1):4994. PubMed ID: 38862466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MNMST: topology of cell networks leverages identification of spatial domains from spatial transcriptomics data.
    Wang Y; Liu Z; Ma X
    Genome Biol; 2024 May; 25(1):133. PubMed ID: 38783355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iIMPACT: integrating image and molecular profiles for spatial transcriptomics analysis.
    Jiang X; Wang S; Guo L; Zhu B; Wen Z; Jia L; Xu L; Xiao G; Li Q
    Genome Biol; 2024 Jun; 25(1):147. PubMed ID: 38844966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.