These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38973097)

  • 1. Impact of Surfactants on Cumulative Trypsin Activity in Bottom-Up Proteome Analysis.
    Nickerson JL; Sheridan LV; Doucette AA
    J Proteome Res; 2024 Aug; 23(8):3542-3551. PubMed ID: 38973097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of common surfactants on protein digestion and matrix-assisted laser desorption/ionization mass spectrometric analysis of the digested peptides using two-layer sample preparation.
    Zhang N; Li L
    Rapid Commun Mass Spectrom; 2004; 18(8):889-96. PubMed ID: 15095358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.
    Serra A; Zhu H; Gallart-Palau X; Park JE; Ho HH; Tam JP; Sze SK
    Anal Bioanal Chem; 2016 Mar; 408(7):1963-73. PubMed ID: 26804737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin.
    Proc JL; Kuzyk MA; Hardie DB; Yang J; Smith DS; Jackson AM; Parker CE; Borchers CH
    J Proteome Res; 2010 Oct; 9(10):5422-37. PubMed ID: 20722421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane.
    Zhou J; Zhou T; Cao R; Liu Z; Shen J; Chen P; Wang X; Liang S
    J Proteome Res; 2006 Oct; 5(10):2547-53. PubMed ID: 17022626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of mass spectrometry-compatible surfactants for shotgun proteomics.
    Chen EI; Cociorva D; Norris JL; Yates JR
    J Proteome Res; 2007 Jul; 6(7):2529-38. PubMed ID: 17530876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of solubilization and digestion methods for microsomal membrane proteome analysis using data-independent LC-MSE.
    Mbeunkui F; Goshe MB
    Proteomics; 2011 Mar; 11(5):898-911. PubMed ID: 21280217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximizing Cumulative Trypsin Activity with Calcium at Elevated Temperature for Enhanced Bottom-Up Proteome Analysis.
    Nickerson JL; Doucette AA
    Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis.
    Masuda T; Tomita M; Ishihama Y
    J Proteome Res; 2008 Feb; 7(2):731-40. PubMed ID: 18183947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis.
    León IR; Schwämmle V; Jensen ON; Sprenger RR
    Mol Cell Proteomics; 2013 Oct; 12(10):2992-3005. PubMed ID: 23792921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium laurate, a novel protease- and mass spectrometry-compatible detergent for mass spectrometry-based membrane proteomics.
    Lin Y; Huo L; Liu Z; Li J; Liu Y; He Q; Wang X; Liang S
    PLoS One; 2013; 8(3):e59779. PubMed ID: 23555778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the precision of a detergent-assisted cartridge precipitation workflow for non-targeted quantitative proteomics.
    Nickerson JL; Gagnon H; Wentzell PD; Doucette AA
    Proteomics; 2024 May; 24(10):e2300339. PubMed ID: 38299459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfluorooctanoic acid and ammonium perfluorooctanoate: volatile surfactants for proteome analysis?
    Vieira DB; Crowell AM; Doucette AA
    Rapid Commun Mass Spectrom; 2012 Mar; 26(5):523-31. PubMed ID: 22302492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-labile surfactant improves in-sodium dodecyl sulfate polyacrylamide gel protein digestion for matrix-assisted laser desorption/ionization mass spectrometric peptide mapping.
    Nomura E; Katsuta K; Ueda T; Toriyama M; Mori T; Inagaki N
    J Mass Spectrom; 2004 Feb; 39(2):202-7. PubMed ID: 14991690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of workflows optimized for in-gel, in-solution, and on-filter proteolysis in the analysis of plasma membrane proteins.
    Choksawangkarn W; Edwards N; Wang Y; Gutierrez P; Fenselau C
    J Proteome Res; 2012 May; 11(5):3030-4. PubMed ID: 22500775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding proteome coverage with orthogonal-specificity α-lytic proteases.
    Meyer JG; Kim S; Maltby DA; Ghassemian M; Bandeira N; Komives EA
    Mol Cell Proteomics; 2014 Mar; 13(3):823-35. PubMed ID: 24425750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of partial tryptic digestion in organic-aqueous solvent systems for bottom-up proteome analysis.
    Wall MJ; Crowell AM; Simms GA; Carey GH; Liu F; Doucette AA
    Anal Chim Acta; 2011 Oct; 703(2):194-203. PubMed ID: 21889634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of surfactant-assisted shotgun methods using acid-labile surfactants and sodium dodecyl sulfate for membrane proteome analysis.
    Wu F; Sun D; Wang N; Gong Y; Li L
    Anal Chim Acta; 2011 Jul; 698(1-2):36-43. PubMed ID: 21645657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.