These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38973613)

  • 1. LSTrAP-denovo: Automated Generation of Transcriptome Atlases for Eukaryotic Species Without Genomes.
    Lim PK; Wang R; Mutwil M
    Physiol Plant; 2024; 176(4):e14407. PubMed ID: 38973613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LSTrAP-Kingdom: an automated pipeline to generate annotated gene expression atlases for kingdoms of life.
    Goh W; Mutwil M
    Bioinformatics; 2021 Sep; 37(18):3053-3055. PubMed ID: 33704421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LSTrAP: efficiently combining RNA sequencing data into co-expression networks.
    Proost S; Krawczyk A; Mutwil M
    BMC Bioinformatics; 2017 Oct; 18(1):444. PubMed ID: 29017446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
    Gan RC; Chen TW; Wu TH; Huang PJ; Lee CC; Yeh YM; Chiu CH; Huang HD; Tang P
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):513. PubMed ID: 28155708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing.
    Fu S; Ma Y; Yao H; Xu Z; Chen S; Song J; Au KF
    Bioinformatics; 2018 Jul; 34(13):2168-2176. PubMed ID: 29905763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CAARS: comparative assembly and annotation of RNA-Seq data.
    Rey C; Veber P; Boussau B; Sémon M
    Bioinformatics; 2019 Jul; 35(13):2199-2207. PubMed ID: 30452539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-Seq Data Analysis Pipeline for Plants: Transcriptome Assembly, Alignment, and Differential Expression Analysis.
    Burks DJ; Azad RK
    Methods Mol Biol; 2022; 2396():47-60. PubMed ID: 34786675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LSTrAP-Cloud: A User-Friendly Cloud Computing Pipeline to Infer Coexpression Networks.
    Tan QW; Goh W; Mutwil M
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32316247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data.
    Duan J; Xia C; Zhao G; Jia J; Kong X
    BMC Genomics; 2012 Aug; 13():392. PubMed ID: 22891638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq data and associated protein sequences.
    Banerjee S; Bhandary P; Woodhouse M; Sen TZ; Wise RP; Andorf CM
    BMC Bioinformatics; 2021 Apr; 22(1):205. PubMed ID: 33879057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Nile rat transcriptomic landscape across 22 organs by ultra-deep sequencing and comparative RNA-seq pipeline (CRSP).
    Toh H; Bagheri A; Dewey C; Stewart R; Yan L; Clegg D; Thomson JA; Jiang P
    Comput Biol Chem; 2023 Feb; 102():107795. PubMed ID: 36436489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-quality annotated transcriptome of swine peripheral blood.
    Liu H; Smith TPL; Nonneman DJ; Dekkers JCM; Tuggle CK
    BMC Genomics; 2017 Jun; 18(1):479. PubMed ID: 28646867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo assembly and characterization of Sophora japonica transcriptome using RNA-seq.
    Zhu L; Zhang Y; Guo W; Xu XJ; Wang Q
    Biomed Res Int; 2014; 2014():750961. PubMed ID: 24516854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms.
    Mbandi SK; Hesse U; van Heusden P; Christoffels A
    BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Algorithm for Physiological Interpretation of Transcriptome Profiling Data for Non-Model Organisms].
    Gubaev RF; Gorshkov VY; Gapa LM; Gogoleva NE; Vetchinkina EP; Gogolev YV
    Mol Biol (Mosk); 2018; 52(4):576-590. PubMed ID: 30113023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-Seq in Nonmodel Organisms.
    Chalifa-Caspi V
    Methods Mol Biol; 2021; 2243():143-167. PubMed ID: 33606257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.