These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38973652)
1. Nanoarchitectonics in Advanced Membranes for Enhanced Osmotic Energy Harvesting. Wang P; Tao W; Zhou T; Wang J; Zhao C; Zhou G; Yamauchi Y Adv Mater; 2024 Aug; 36(35):e2404418. PubMed ID: 38973652 [TBL] [Abstract][Full Text] [Related]
2. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR; Kwon C; Lee H; Kim S; Cho ES ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224 [TBL] [Abstract][Full Text] [Related]
3. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371 [TBL] [Abstract][Full Text] [Related]
4. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting. Shi J; Sun X; Zhang Y; Niu S; Wang Z; Wu Z; An M; Chen L; Li J Carbohydr Polym; 2024 Mar; 327():121656. PubMed ID: 38171677 [TBL] [Abstract][Full Text] [Related]
5. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Laucirica G; Toimil-Molares ME; Trautmann C; Marmisollé W; Azzaroni O Chem Sci; 2021 Oct; 12(39):12874-12910. PubMed ID: 34745520 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion. Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875 [TBL] [Abstract][Full Text] [Related]
7. Mono-component bacterial cellulose heterogeneous membrane mediated by ionic liquids for osmotic energy harvesting. Zhang X; Huang H; Chen S; Xu Y; Xu F Int J Biol Macromol; 2024 Feb; 258(Pt 2):128984. PubMed ID: 38151089 [TBL] [Abstract][Full Text] [Related]
8. 2D Ordered Mesoporous Lamellar Hetero-Nanochannels with Asymmetric Wettability for Controllable Ion Transport. He Y; Huang Z; Xie L; Zhang X; Hu X; Liang K; Jiang L; Zhou S; Kong B Small; 2024 Mar; 20(11):e2306910. PubMed ID: 37926698 [TBL] [Abstract][Full Text] [Related]
9. Electrodeposited MOFs Membrane with In Situ Incorporation of Charged Molecules for Osmotic Energy Harvesting. Yao B; Hussain S; Ye Z; Peng X Small; 2023 May; 19(18):e2207559. PubMed ID: 36725315 [TBL] [Abstract][Full Text] [Related]
10. Angstrom-Scale 2D Channels Designed For Osmotic Energy Harvesting. Ding Z; Gu T; Zhang M; Wang K; Sun D; Li J Small; 2024 Nov; 20(44):e2403593. PubMed ID: 39180252 [TBL] [Abstract][Full Text] [Related]
11. Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels. Wang J; Cui Z; Li S; Song Z; He M; Huang D; Feng Y; Liu Y; Zhou K; Wang X; Wang L Nat Commun; 2024 Jan; 15(1):608. PubMed ID: 38242879 [TBL] [Abstract][Full Text] [Related]
12. Advancing osmotic power generation by covalent organic framework monolayer. Yang J; Tu B; Zhang G; Liu P; Hu K; Wang J; Yan Z; Huang Z; Fang M; Hou J; Fang Q; Qiu X; Li L; Tang Z Nat Nanotechnol; 2022 Jun; 17(6):622-628. PubMed ID: 35469012 [TBL] [Abstract][Full Text] [Related]
13. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Zhang Z; He L; Zhu C; Qian Y; Wen L; Jiang L Nat Commun; 2020 Feb; 11(1):875. PubMed ID: 32054863 [TBL] [Abstract][Full Text] [Related]
14. Miniaturized Salinity Gradient Energy Harvesting Devices. Hsu WS; Preet A; Lin TY; Lin TE Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940 [TBL] [Abstract][Full Text] [Related]
15. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152 [TBL] [Abstract][Full Text] [Related]
16. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting. Lin C; Hao J; Zhao J; Hou Y; Ma S; Sui X J Colloid Interface Sci; 2024 Jan; 654(Pt B):840-847. PubMed ID: 37898068 [TBL] [Abstract][Full Text] [Related]
17. Confined amphipathic ionic-liquid regulated anodic aluminum oxide membranes with adjustable ion selectivity for improved osmotic energy conversion. Ma S; Hao J; Hou Y; Zhao J; Lin C; Sui X J Colloid Interface Sci; 2024 Jan; 653(Pt B):1217-1224. PubMed ID: 37797497 [TBL] [Abstract][Full Text] [Related]
18. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408375. PubMed ID: 38847272 [TBL] [Abstract][Full Text] [Related]
19. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane. Gao Z; Sun Z; Ahmad M; Liu Y; Wei H; Wang S; Jin Y Carbohydr Polym; 2022 Mar; 280():119023. PubMed ID: 35027125 [TBL] [Abstract][Full Text] [Related]
20. Bioinspired Angstrom-Scale Heterogeneous MOF-on-MOF Membrane for Osmotic Energy Harvesting. Tonnah RK; Chai M; Abdollahzadeh M; Xiao H; Mohammad M; Hosseini E; Zakertabrizi M; Jarrahbashi D; Asadi A; Razmjou A; Asadnia M ACS Nano; 2023 Jul; 17(13):12445-12457. PubMed ID: 37347939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]