These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38973671)

  • 1. Photo-responsive anti-fouling polyzwitterionic brushes: a mesoscopic simulation.
    Miao Z; Zhou J
    J Mater Chem B; 2024 Jul; ():. PubMed ID: 38973671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties.
    Chen H; Yang J; Xiao S; Hu R; Bhaway SM; Vogt BD; Zhang M; Chen Q; Ma J; Chang Y; Li L; Zheng J
    Acta Biomater; 2016 Aug; 40():62-69. PubMed ID: 26965396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y; Zhang D; Ren B; Gong X; Xu L; Feng ZQ; Chang Y; He Y; Zheng J
    J Mater Chem B; 2020 May; 8(17):3814-3828. PubMed ID: 32227061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-responsive zwitterion-modified nanopores: a mesoscopic simulation study.
    Miao Z; Chen Z; Wang L; Zhang L; Zhou J
    J Mater Chem B; 2022 Apr; 10(14):2740-2749. PubMed ID: 35311850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing membrane surface antifouling by implanting amphiphilic polymer brushes using a swelling induced entrapment technique.
    Fang C; Zhang X; Gong X; Feng W; Zhu L; Matsuyama H
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111212. PubMed ID: 32645593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture.
    Quintana R; Gosa M; Jańczewski D; Kutnyanszky E; Vancso GJ
    Langmuir; 2013 Aug; 29(34):10859-67. PubMed ID: 23876125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes.
    Víšová I; Vrabcová M; Forinová M; Zhigunová Y; Mironov V; Houska M; Bittrich E; Eichhorn KJ; Hashim H; Schovánek P; Dejneka A; Vaisocherová-Lísalová H
    Langmuir; 2020 Jul; 36(29):8485-8493. PubMed ID: 32506911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the Surface Chemistry of Anion Exchange Membranes with Zwitterions: Toward Antifouling RED Membranes.
    Pintossi D; Saakes M; Borneman Z; Nijmeijer K
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18348-18357. PubMed ID: 33827211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Amphiphilic Zwitterionic Thin Poly(SBMA-
    Kim I; Kang SM
    Langmuir; 2024 Feb; 40(6):3213-3221. PubMed ID: 38314692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zwitterionic Tröger's Base Microfiltration Membrane Prepared via Vapor-Induced Phase Separation with Improved Demulsification and Antifouling Performance.
    Wang M; Huang T; Shan M; Sun M; Liu S; Tang H
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Antifouling Performance of Weakly Hydrophilic Polymer Brushes: A Molecular Dynamics Study.
    Yagasaki T; Matubayasi N
    Langmuir; 2024 Jul; ():. PubMed ID: 39004900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property.
    Zhang D; Ren B; Zhang Y; Liu Y; Chen H; Xiao S; Chang Y; Yang J; Zheng J
    J Colloid Interface Sci; 2020 Oct; 578():242-253. PubMed ID: 32531554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Effective and Adsorption-Based Antifouling Zipper Brushes: Effect of pH, Salt, and Polymer Design.
    Maan AMC; Hofman AH; Pelras T; Ruhof IM; Kamperman M; de Vos WM
    ACS Appl Polym Mater; 2023 Oct; 5(10):7968-7981. PubMed ID: 37854302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Antifouling Mechanism of Zwitterionic Monomer-Grafted Polyvinylidene Difluoride Membranes: A Comparative Experimental and Molecular Dynamics Simulation Study.
    Liu ZY; Jiang Q; Jin Z; Sun Z; Ma W; Wang Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14408-14417. PubMed ID: 30895780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zwitterionic Polymer Brush Grafted on Polyvinylidene Difluoride Membrane Promoting Enhanced Ultrafiltration Performance with Augmented Antifouling Property.
    Chiao YH; Chen ST; Sivakumar M; Ang MBMY; Patra T; Almodovar J; Wickramasinghe SR; Hung WS; Lai JY
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32517332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Dependence of Salt-Responsive Polyzwitterionic Brushes with an Anti-Polyelectrolyte Effect.
    Xiao S; Zhang Y; Shen M; Chen F; Fan P; Zhong M; Ren B; Yang J; Zheng J
    Langmuir; 2018 Jan; 34(1):97-105. PubMed ID: 29232140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-responsive polymer surfaces via postpolymerization modification of grafted polymer-brush structures.
    Dübner M; Spencer ND; Padeste C
    Langmuir; 2014 Dec; 30(49):14971-81. PubMed ID: 25419582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic non-fouling surfaces: extending the concepts.
    Pop-Georgievski O; Rodriguez-Emmenegger C; Pereira ALS; Proks V; Brynda E; Rypáček F
    J Mater Chem B; 2013 Jun; 1(22):2859-2867. PubMed ID: 32260872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.