These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38973880)

  • 1. Robust Rain-Repellency and Droplet Bouncing Properties of
    Choubey R; Rowthu S
    ACS Omega; 2024 Jul; 9(26):28323-28338. PubMed ID: 38973880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of self-recovery of hydrophobicity after surface damage of lotus leaf.
    Wang L; Shu L; Hu Q; Jiang X; Yang H; Wang H; Rao L
    Plant Methods; 2024 Mar; 20(1):47. PubMed ID: 38515129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-wet kingfisher flying in the rain: The water-repellent mechanism of elastic feathers.
    Zhang C; Zheng Y; Wu Z; Wang J; Shen C; Liu Y; Ren L
    J Colloid Interface Sci; 2019 Apr; 541():56-64. PubMed ID: 30682593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface morphology and microstructure of Bauhinia variegata L. flowers and leaves.
    Xu Y
    Micron; 2024 Feb; 177():103575. PubMed ID: 38086225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of surface hierarchy for extreme hydrophobicity.
    Kwon Y; Patankar N; Choi J; Lee J
    Langmuir; 2009 Jun; 25(11):6129-36. PubMed ID: 19466776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf.
    Ensikat HJ; Ditsche-Kuru P; Neinhuis C; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():152-61. PubMed ID: 21977427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ricocheting Droplets Moving on Super-Repellent Surfaces.
    Pan S; Guo R; Richardson JJ; Berry JD; Besford QA; Björnmalm M; Yun G; Wu R; Lin Z; Zhong QZ; Zhou J; Sun Q; Li J; Lu Y; Dong Z; Banks MK; Xu W; Jiang J; Jiang L; Caruso F
    Adv Sci (Weinh); 2019 Nov; 6(21):1901846. PubMed ID: 31728297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When rain collides with plants-patterns and forces of drop impact and how leaves respond to them.
    Roth-Nebelsick A; Konrad W; Ebner M; Miranda T; Thielen S; Nebelsick JH
    J Exp Bot; 2022 Feb; 73(4):1155-1175. PubMed ID: 35038724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces.
    Stratakis E; Mateescu A; Barberoglou M; Vamvakaki M; Fotakis C; Anastasiadis SH
    Chem Commun (Camb); 2010 Jun; 46(23):4136-8. PubMed ID: 20467673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure.
    Zhu C; Yu X; Lv J; Zhang J; Yang J; Hao N; Feng J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53394-53402. PubMed ID: 33175502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces.
    Li J; Wang W; Mei X; Pan A
    ACS Omega; 2020 Nov; 5(44):28776-28783. PubMed ID: 33195931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures.
    Nishimura R; Hyodo K; Sawaguchi H; Yamamoto Y; Nonomura Y; Mayama H; Yokojima S; Nakamura S; Uchida K
    J Am Chem Soc; 2016 Aug; 138(32):10299-303. PubMed ID: 27455376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting Molecular Dynamics in Composite Coatings to Design Robust Super-Repellent Surfaces.
    Guo R; Goudeli E; Xu W; Richardson JJ; Xu W; Pan S
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104331. PubMed ID: 34997692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
    Malla LK; Patil ND; Bhardwaj R; Neild A
    Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal changes in morphology govern wettability of Katsura leaves.
    Kang H; Graybill PM; Fleetwood S; Boreyko JB; Jung S
    PLoS One; 2018; 13(9):e0202900. PubMed ID: 30260963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ecological perspective on water shedding from leaves.
    Lenz AK; Bauer U; Ruxton GD
    J Exp Bot; 2022 Feb; 73(4):1176-1189. PubMed ID: 34727175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets.
    Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H
    Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aphids increase their rate of survival on emergent aquatic plants through niche construction.
    Kodera T; Ohsaki H; Yamawo A
    J Evol Biol; 2024 Mar; 37(3):283-289. PubMed ID: 38340333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.