These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 38973915)
1. Identification of a Cryptic Pocket in Methionine Aminopeptidase-II Using Adaptive Bandit Molecular Dynamics Simulations and Markov State Models. Rubina ; Moin ST; Haider S ACS Omega; 2024 Jul; 9(26):28534-28545. PubMed ID: 38973915 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into N-terminal methionine cleavage by the human mitochondrial methionine aminopeptidase, MetAP1D. Lee Y; Kim H; Lee E; Hahn H; Heo Y; Jang DM; Kwak K; Kim HJ; Kim HS Sci Rep; 2023 Dec; 13(1):22326. PubMed ID: 38102161 [TBL] [Abstract][Full Text] [Related]
3. Understanding the selectivity of fumagillin for the methionine aminopeptidase type II. Klein CD; Folkers G Oncol Res; 2003; 13(12):513-20. PubMed ID: 12899241 [TBL] [Abstract][Full Text] [Related]
4. Discovery of a new genetic variant of methionine aminopeptidase from Streptococci with possible post-translational modifications: biochemical and structural characterization. Arya T; Kishor C; Saddanapu V; Reddi R; Addlagatta A PLoS One; 2013; 8(10):e75207. PubMed ID: 24124477 [TBL] [Abstract][Full Text] [Related]
5. Identification of promising methionine aminopeptidase enzyme inhibitors: A combine study of comprehensive virtual screening and dynamics simulation study. Alabbas AB Saudi Pharm J; 2023 Sep; 31(9):101745. PubMed ID: 37638221 [TBL] [Abstract][Full Text] [Related]
6. Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit. Bhakta S; Akbar S; Sengupta J J Mol Biol; 2019 Mar; 431(7):1426-1439. PubMed ID: 30753870 [TBL] [Abstract][Full Text] [Related]
7. Attempting Well-Tempered Funnel Metadynamics Simulations for the Evaluation of the Binding Kinetics of Methionine Aminopeptidase-II Inhibitors. Rubina ; Moin ST J Chem Inf Model; 2023 Dec; 63(24):7729-7743. PubMed ID: 38059911 [TBL] [Abstract][Full Text] [Related]
8. Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity. Wang WL; Chai SC; Huang M; He HZ; Hurley TD; Ye QZ J Med Chem; 2008 Oct; 51(19):6110-20. PubMed ID: 18785729 [TBL] [Abstract][Full Text] [Related]
9. Discovery of a cryptic pocket in the AI-predicted structure of PPM1D phosphatase explains the binding site and potency of its allosteric inhibitors. Meller A; De Oliveira S; Davtyan A; Abramyan T; Bowman GR; van den Bedem H Front Mol Biosci; 2023; 10():1171143. PubMed ID: 37143823 [TBL] [Abstract][Full Text] [Related]
10. FE(II) is the native cofactor for Escherichia coli methionine aminopeptidase. Chai SC; Wang WL; Ye QZ J Biol Chem; 2008 Oct; 283(40):26879-85. PubMed ID: 18669631 [TBL] [Abstract][Full Text] [Related]
11. Novel reversible methionine aminopeptidase-2 (MetAP-2) inhibitors based on purine and related bicyclic templates. Heinrich T; Buchstaller HP; Cezanne B; Rohdich F; Bomke J; Friese-Hamim M; Krier M; Knöchel T; Musil D; Leuthner B; Zenke F Bioorg Med Chem Lett; 2017 Feb; 27(3):551-556. PubMed ID: 27998678 [TBL] [Abstract][Full Text] [Related]
12. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites. Verkhivker G; Alshahrani M; Gupta G Viruses; 2023 Sep; 15(10):. PubMed ID: 37896786 [TBL] [Abstract][Full Text] [Related]
13. Identification of an SH3-binding motif in a new class of methionine aminopeptidases from Mycobacterium tuberculosis suggests a mode of interaction with the ribosome. Addlagatta A; Quillin ML; Omotoso O; Liu JO; Matthews BW Biochemistry; 2005 May; 44(19):7166-74. PubMed ID: 15882055 [TBL] [Abstract][Full Text] [Related]
14. Small molecule inhibitors of methionine aminopeptidase type 2 (MetAP-2). Garrabrant T; Tuman RW; Ludovici D; Tominovich R; Simoneaux RL; Galemmo RA; Johnson DL Angiogenesis; 2004; 7(2):91-6. PubMed ID: 15516829 [TBL] [Abstract][Full Text] [Related]
15. Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: a case of mistaken identity? Walker KW; Bradshaw RA Protein Sci; 1998 Dec; 7(12):2684-7. PubMed ID: 9865965 [TBL] [Abstract][Full Text] [Related]
16. Rickettsia prowazekii methionine aminopeptidase as a promising target for the development of antibacterial agents. Helgren TR; Chen C; Wangtrakuldee P; Edwards TE; Staker BL; Abendroth J; Sankaran B; Housley NA; Myler PJ; Audia JP; Horn JR; Hagen TJ Bioorg Med Chem; 2017 Feb; 25(3):813-824. PubMed ID: 28089350 [TBL] [Abstract][Full Text] [Related]
17. A single amino acid residue defines the difference in ovalicin sensitivity between type I and II methionine aminopeptidases. Brdlik CM; Crews CM J Biol Chem; 2004 Mar; 279(10):9475-80. PubMed ID: 14676204 [TBL] [Abstract][Full Text] [Related]
18. Discovery and Structure-Based Optimization of Next-Generation Reversible Methionine Aminopeptidase-2 (MetAP-2) Inhibitors. Heinrich T; Seenisamy J; Blume B; Bomke J; Calderini M; Eckert U; Friese-Hamim M; Kohl R; Lehmann M; Leuthner B; Musil D; Rohdich F; Zenke FT J Med Chem; 2019 May; 62(10):5025-5039. PubMed ID: 30939017 [TBL] [Abstract][Full Text] [Related]
19. The identification of inhibitory compounds of Rickettsia prowazekii methionine aminopeptidase for antibacterial applications. Helgren TR; Seven ES; Chen C; Edwards TE; Staker BL; Abendroth J; Myler PJ; Horn JR; Hagen TJ Bioorg Med Chem Lett; 2018 May; 28(8):1376-1380. PubMed ID: 29551481 [TBL] [Abstract][Full Text] [Related]
20. Discovery of a cryptic pocket in the AI-predicted structure of PPM1D phosphatase explains the binding site and potency of its allosteric inhibitors. Meller A; de Oliveira S; Davtyan A; Abramyan T; Bowman GR; van den Bedem H bioRxiv; 2023 Mar; ():. PubMed ID: 36993233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]