BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 3897553)

  • 1. Crystallographic refinement of yeast aspartic acid transfer RNA.
    Westhof E; Dumas P; Moras D
    J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals.
    Westhof E; Dumas P; Moras D
    Acta Crystallogr A; 1988 Mar; 44 ( Pt 2)():112-23. PubMed ID: 3272146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles.
    Westhof E; Sundaralingam M
    Biochemistry; 1986 Aug; 25(17):4868-78. PubMed ID: 3533142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of yeast tRNAAsp: atomic coordinates.
    Dumas P; Ebel JP; Giegé R; Moras D; Thierry JC; Westhof E
    Biochimie; 1985 Jun; 67(6):597-606. PubMed ID: 3902098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop stereochemistry and dynamics in transfer RNA.
    Westhof E; Dumas P; Moras D
    J Biomol Struct Dyn; 1983 Oct; 1(2):337-55. PubMed ID: 6401114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases.
    Romby P; Moras D; Dumas P; Ebel JP; Giegé R
    J Mol Biol; 1987 May; 195(1):193-204. PubMed ID: 3309332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of yeast tRNAAsp.
    Moras D; Comarmond MB; Fischer J; Weiss R; Thierry JC; Ebel JP; Giegé R
    Nature; 1980 Dec; 288(5792):669-74. PubMed ID: 7005687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction.
    Davanloo P; Sprinzl M; Cramer F
    Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    J Biomol Struct Dyn; 1985 Dec; 3(3):479-93. PubMed ID: 3917033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea.
    Romby P; Moras D; Bergdoll M; Dumas P; Vlassov VV; Westhof E; Ebel JP; Giegé R
    J Mol Biol; 1985 Aug; 184(3):455-71. PubMed ID: 3900415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel conformational change of the anticodon region of tRNAPhe (yeast).
    Urbanke C; Maass G
    Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop.
    Gorenstein DG; Goldfield EM
    Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study.
    Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH
    Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution.
    Schneider G; Lindqvist Y; Lundqvist T
    J Mol Biol; 1990 Feb; 211(4):989-1008. PubMed ID: 2107319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal.
    Romby P; Giegé R; Houssier C; Grosjean H
    J Mol Biol; 1985 Jul; 184(1):107-118. PubMed ID: 2411934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4501-20. PubMed ID: 6346269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conformation of the anticodon loop of yeast tRNAPhe in solution and on ribosomes.
    Odom OW; Craig BB; Hardesty BA
    Biopolymers; 1978 Dec; 17(12):2909-31. PubMed ID: 365255
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.