These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 3897553)
1. Crystallographic refinement of yeast aspartic acid transfer RNA. Westhof E; Dumas P; Moras D J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553 [TBL] [Abstract][Full Text] [Related]
2. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Westhof E; Dumas P; Moras D Acta Crystallogr A; 1988 Mar; 44 ( Pt 2)():112-23. PubMed ID: 3272146 [TBL] [Abstract][Full Text] [Related]
3. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Westhof E; Sundaralingam M Biochemistry; 1986 Aug; 25(17):4868-78. PubMed ID: 3533142 [TBL] [Abstract][Full Text] [Related]
4. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition. Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167 [TBL] [Abstract][Full Text] [Related]
6. Loop stereochemistry and dynamics in transfer RNA. Westhof E; Dumas P; Moras D J Biomol Struct Dyn; 1983 Oct; 1(2):337-55. PubMed ID: 6401114 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. Romby P; Moras D; Dumas P; Ebel JP; Giegé R J Mol Biol; 1987 May; 195(1):193-204. PubMed ID: 3309332 [TBL] [Abstract][Full Text] [Related]
9. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Davanloo P; Sprinzl M; Cramer F Biochemistry; 1979 Jul; 18(15):3189-99. PubMed ID: 380644 [TBL] [Abstract][Full Text] [Related]
10. The structure of yeast tRNA(Asp). A model for tRNA interacting with messenger RNA. Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R J Biomol Struct Dyn; 1985 Dec; 3(3):479-93. PubMed ID: 3917033 [TBL] [Abstract][Full Text] [Related]
11. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. Romby P; Moras D; Bergdoll M; Dumas P; Vlassov VV; Westhof E; Ebel JP; Giegé R J Mol Biol; 1985 Aug; 184(3):455-71. PubMed ID: 3900415 [TBL] [Abstract][Full Text] [Related]
12. A novel conformational change of the anticodon region of tRNAPhe (yeast). Urbanke C; Maass G Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565 [TBL] [Abstract][Full Text] [Related]
13. High-resolution phosphorus nuclear magnetic resonance spectroscopy of transfer ribonucleic acids: multiple conformations in the anticodon loop. Gorenstein DG; Goldfield EM Biochemistry; 1982 Nov; 21(23):5839-49. PubMed ID: 6185140 [TBL] [Abstract][Full Text] [Related]
14. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745 [TBL] [Abstract][Full Text] [Related]
15. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268 [TBL] [Abstract][Full Text] [Related]
16. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence. Okabe N; Cramer F J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259 [TBL] [Abstract][Full Text] [Related]
17. Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 A resolution. Schneider G; Lindqvist Y; Lundqvist T J Mol Biol; 1990 Feb; 211(4):989-1008. PubMed ID: 2107319 [TBL] [Abstract][Full Text] [Related]
18. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal. Romby P; Giegé R; Houssier C; Grosjean H J Mol Biol; 1985 Jul; 184(1):107-118. PubMed ID: 2411934 [TBL] [Abstract][Full Text] [Related]
19. Nuclear magnetic resonance studies on yeast tRNAPhe. III. Assignments of the iminoproton resonances of the tertiary structure by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4501-20. PubMed ID: 6346269 [TBL] [Abstract][Full Text] [Related]
20. The conformation of the anticodon loop of yeast tRNAPhe in solution and on ribosomes. Odom OW; Craig BB; Hardesty BA Biopolymers; 1978 Dec; 17(12):2909-31. PubMed ID: 365255 [No Abstract] [Full Text] [Related] [Next] [New Search]