These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38975570)
1. An elementary proof of existence and uniqueness for the Euler flow in localized Yudovich spaces. Crippa G; Stefani G Calc Var Partial Differ Equ; 2024; 63(7):168. PubMed ID: 38975570 [TBL] [Abstract][Full Text] [Related]
2. Non-uniqueness of Admissible Solutions for the 2D Euler Equation with Mengual F Commun Math Phys; 2024; 405(9):207. PubMed ID: 39310718 [TBL] [Abstract][Full Text] [Related]
3. The relativistic Euler equations with a physical vacuum boundary: Hadamard local well-posedness, rough solutions, and continuation criterion. Disconzi MM; Ifrim M; Tataru D Arch Ration Mech Anal; 2022; 245(1):127-182. PubMed ID: 35761996 [TBL] [Abstract][Full Text] [Related]
5. Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow. Franzoi L; Masmoudi N; Montalto R Arch Ration Mech Anal; 2024; 248(5):81. PubMed ID: 39280084 [TBL] [Abstract][Full Text] [Related]
6. Littlewood-Paley operators on Morrey spaces with variable exponent. Tao S; Wang L ScientificWorldJournal; 2014; 2014():790671. PubMed ID: 25180207 [TBL] [Abstract][Full Text] [Related]
7. Well-posedness for a stochastic 2D Euler equation with transport noise. Lang O; Crisan D Stoch Partial Differ Equ; 2023; 11(2):433-480. PubMed ID: 37205178 [TBL] [Abstract][Full Text] [Related]
8. A new class between theta open sets and theta omega open sets. Al Ghour S; Al-Zoubi S Heliyon; 2021 Jan; 7(1):e05996. PubMed ID: 33521360 [TBL] [Abstract][Full Text] [Related]
9. Wavelet-based regularization of the Galerkin truncated three-dimensional incompressible Euler flows. Farge M; Okamoto N; Schneider K; Yoshimatsu K Phys Rev E; 2017 Dec; 96(6-1):063119. PubMed ID: 29347383 [TBL] [Abstract][Full Text] [Related]
10. A Refined Well-Posedness Result for the Modified KdV Equation in the Fourier-Lebesgue Spaces. Chapouto A J Dyn Differ Equ; 2023; 35(3):2537-2578. PubMed ID: 37588032 [TBL] [Abstract][Full Text] [Related]
11. Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations. Ray SS; Frisch U; Nazarenko S; Matsumoto T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016301. PubMed ID: 21867298 [TBL] [Abstract][Full Text] [Related]
12. Energy balance for forced two-dimensional incompressible ideal fluid flow. Lopes Filho MC; Nussenzveig Lopes HJ Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210095. PubMed ID: 35094564 [TBL] [Abstract][Full Text] [Related]
13. Duality and the well-posedness of a martingale problem. Depperschmidt A; Greven A; Pfaffelhuber P Theor Popul Biol; 2024 Oct; 159():59-73. PubMed ID: 39154987 [TBL] [Abstract][Full Text] [Related]
14. A proof of validity for multiphase Whitham modulation theory. Bridges TJ; Kostianko A; Schneider G Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200203. PubMed ID: 33362408 [TBL] [Abstract][Full Text] [Related]
15. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics. Suryanarayanan S; Narasimha R; Hari Dass ND Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013009. PubMed ID: 24580322 [TBL] [Abstract][Full Text] [Related]
16. Relaxed solutions for incompressible inviscid flows: a variational and gravitational approximation to the initial value problem. Brenier Y; Moyano I Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210078. PubMed ID: 35094558 [TBL] [Abstract][Full Text] [Related]
17. Some explicit solutions of the three-dimensional Euler equations with a free surface. Martin CI Math Ann; 2022; 384(3-4):1653-1673. PubMed ID: 36275449 [TBL] [Abstract][Full Text] [Related]
18. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Ohkitani K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046304. PubMed ID: 12006010 [TBL] [Abstract][Full Text] [Related]
19. Growth rate analysis of scalar gradients in generalized surface quasigeostrophic equations of ideal fluids. Ohkitani K Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036317. PubMed ID: 21517597 [TBL] [Abstract][Full Text] [Related]
20. Global solutions of aggregation equations and other flows with random diffusion. Rosenzweig M; Staffilani G Probab Theory Relat Fields; 2023; 185(3-4):1219-1262. PubMed ID: 36969725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]