These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38975655)

  • 1. Overcoming the Chemical Complexity Bottleneck in on-the-Fly Machine Learned Molecular Dynamics Simulations.
    Timmerman LR; Kumar S; Suryanarayana P; Medford AJ
    J Chem Theory Comput; 2024 Jul; 20(14):5788-5795. PubMed ID: 38975655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Universal Framework for Featurization of Atomistic Systems.
    Lei X; Medford AJ
    J Phys Chem Lett; 2022 Sep; 13(34):7911-7919. PubMed ID: 35980312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase Transitions of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on the Fly with Bayesian Inference.
    Jinnouchi R; Lahnsteiner J; Karsai F; Kresse G; Bokdam M
    Phys Rev Lett; 2019 Jun; 122(22):225701. PubMed ID: 31283285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Electron Density Prediction Using Weighted Smooth Overlap of Atomic Positions.
    Achar SK; Bernasconi L; Johnson JK
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kohn-Sham accuracy from orbital-free density functional theory via Δ-machine learning.
    Kumar S; Jing X; Pask JE; Medford AJ; Suryanarayana P
    J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38147461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems.
    Böselt L; Thürlemann M; Riniker S
    J Chem Theory Comput; 2021 May; 17(5):2641-2658. PubMed ID: 33818085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron.
    Byggmästar J; Nikoulis G; Fellman A; Granberg F; Djurabekova F; Nordlund K
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35550572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How fast do defects migrate in halide perovskites: insights from on-the-fly machine-learned force fields.
    Pols M; Brouwers V; Calero S; Tao S
    Chem Commun (Camb); 2023 Apr; 59(31):4660-4663. PubMed ID: 36994486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal-Oxide Interfaces.
    Li X; Paier W; Paier J
    Front Chem; 2020; 8():601029. PubMed ID: 33425857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a Gaussian Process Regression Model of Formamide for Use in Molecular Simulations.
    Brown ML; Skelton JM; Popelier PLA
    J Phys Chem A; 2023 Feb; 127(7):1702-1714. PubMed ID: 36756842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-driven investigation of the structure and dynamics of the BMIM-BF
    Zills F; Schäfer MR; Tovey S; Kästner J; Holm C
    Faraday Discuss; 2024 Jul; ():. PubMed ID: 39056186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy stable scheme for random batch molecular dynamics.
    Liang J; Xu Z; Zhao Y
    J Chem Phys; 2024 Jan; 160(3):. PubMed ID: 38226826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bypassing the Kohn-Sham equations with machine learning.
    Brockherde F; Vogt L; Li L; Tuckerman ME; Burke K; Müller KR
    Nat Commun; 2017 Oct; 8(1):872. PubMed ID: 29021555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-learned acceleration for molecular dynamics in CASTEP.
    Stenczel TK; El-Machachi Z; Liepuoniute G; Morrow JD; Bartók AP; Probert MIJ; Csányi G; Deringer VL
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37497818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Polarizable Atomic Multipole-Based Force Field for Molecular Dynamics Simulations of Anionic Lipids.
    Chu H; Peng X; Li Y; Zhang Y; Li G
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29301229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the FFLUX Force Field to Molecular Crystals: A Study of Formamide.
    Brown ML; Skelton JM; Popelier PLA
    J Chem Theory Comput; 2023 Nov; 19(21):7946-7959. PubMed ID: 37847867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Configurations of Nanocrystal Ligands Using Machine-Learned Force Fields.
    Sowa JK; Roberts ST; Rossky PJ
    J Phys Chem Lett; 2023 Aug; 14(32):7215-7222. PubMed ID: 37552568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.