These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38975704)

  • 1. Interplay of size, deformability, and device layout on cell transport in microfluidics.
    Hood MC; Gardner K; Li W; Tan J
    J Phys Condens Matter; 2024 Jul; 36(42):. PubMed ID: 38975704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the transport of particles/cells in high-throughput deterministic lateral displacement devices: Implications for circulating tumor cell separation.
    Aghilinejad A; Aghaamoo M; Chen X
    Biomicrofluidics; 2019 May; 13(3):034112. PubMed ID: 31186821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of critical particle size in asymmetrical deterministic lateral displacement.
    Rezaei B; Moghimi Zand M; Javidi R
    J Chromatogr A; 2021 Jul; 1649():462216. PubMed ID: 34034107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: A numerical study.
    Vernekar R; Krüger T
    Med Eng Phys; 2015 Sep; 37(9):845-54. PubMed ID: 26143149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes.
    Zhang Z; Henry E; Gompper G; Fedosov DA
    J Chem Phys; 2015 Dec; 143(24):243145. PubMed ID: 26723630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical evaluation and experimental validation of cross-flow microfiltration device design.
    De Jesús Vega M; Wakim J; Orbey N; Barry C
    Biomed Microdevices; 2019 Feb; 21(1):21. PubMed ID: 30790088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Electrostatic, Hindrance and Diffusive Effects for Predicting Particle Transport and Separation Efficiency in Deterministic Lateral Displacement Microfluidic Devices.
    Biagioni V; Balestrieri G; Adrover A; Cerbelli S
    Biosensors (Basel); 2020 Sep; 10(9):. PubMed ID: 32947949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology optimization based deterministic lateral displacement array design for cell separation.
    Tang H; Niu J; Pan X; Jin H; Lin S; Cui D
    J Chromatogr A; 2022 Aug; 1679():463384. PubMed ID: 35940060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability-based red blood cell separation in deterministic lateral displacement devices-A simulation study.
    Krüger T; Holmes D; Coveney PV
    Biomicrofluidics; 2014 Sep; 8(5):054114. PubMed ID: 25584112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistage microfluidic cell sorting method and chip based on size and stiffness.
    Li G; Ji Y; Wu Y; Liu Y; Li H; Wang Y; Chi M; Sun H; Zhu H
    Biosens Bioelectron; 2023 Oct; 237():115451. PubMed ID: 37327603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic permeability in deterministic lateral displacement arrays.
    Vernekar R; Krüger T; Loutherback K; Morton K; W Inglis D
    Lab Chip; 2017 Sep; 17(19):3318-3330. PubMed ID: 28861573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated leukocyte processing by microfluidic deterministic lateral displacement.
    Civin CI; Ward T; Skelley AM; Gandhi K; Peilun Lee Z; Dosier CR; D'Silva JL; Chen Y; Kim M; Moynihan J; Chen X; Aurich L; Gulnik S; Brittain GC; Recktenwald DJ; Austin RH; Sturm JC
    Cytometry A; 2016 Dec; 89(12):1073-1083. PubMed ID: 27875619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic lateral displacement for particle separation: a review.
    McGrath J; Jimenez M; Bridle H
    Lab Chip; 2014 Nov; 14(21):4139-58. PubMed ID: 25212386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of blood cells with differing deformability using deterministic lateral displacement(†).
    Holmes D; Whyte G; Bailey J; Vergara-Irigaray N; Ekpenyong A; Guck J; Duke T
    Interface Focus; 2014 Dec; 4(6):20140011. PubMed ID: 25485078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of circulating tumor cell transport and adhesion in cell suspensions in microfluidic devices.
    Tan J; Ding Z; Hood M; Li W
    Biomicrofluidics; 2019 Nov; 13(6):064105. PubMed ID: 31737154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorting cells by their dynamical properties.
    Henry E; Holm SH; Zhang Z; Beech JP; Tegenfeldt JO; Fedosov DA; Gompper G
    Sci Rep; 2016 Oct; 6():34375. PubMed ID: 27708337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the motion and deformation characteristics of red blood cells in a deterministic lateral displacement device.
    Liu S; Chen S; Xiao L; Zhang K; Qi Y; Li H; Cheng Y; Hu Z; Lin C
    Comput Biol Med; 2024 Jan; 168():107712. PubMed ID: 38006825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC electrokinetic biased deterministic lateral displacement for tunable particle separation.
    Calero V; Garcia-Sanchez P; Honrado C; Ramos A; Morgan H
    Lab Chip; 2019 Apr; 19(8):1386-1396. PubMed ID: 30912779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Study of Pillar Shapes in Deterministic Lateral Displacement Microfluidic Arrays for Spherical Particle Separation.
    Wei J; Song H; Shen Z; He Y; Xu X; Zhang Y; Li BN
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):660-7. PubMed ID: 26011890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review on Deterministic Lateral Displacement for Particle Separation and Detection.
    Salafi T; Zhang Y; Zhang Y
    Nanomicro Lett; 2019 Sep; 11(1):77. PubMed ID: 34138050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.