These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38975936)

  • 21. Unraveling capillary interaction and viscoelastic response in atomic force microscopy of hydrated collagen fibrils.
    Uhlig MR; Magerle R
    Nanoscale; 2017 Jan; 9(3):1244-1256. PubMed ID: 28054696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfibrillar structure of type I collagen in situ.
    Orgel JP; Irving TC; Miller A; Wess TJ
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9001-5. PubMed ID: 16751282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the effect of chromium salts on tropocollagen molecules and molecular aggregates.
    Sergeeva IA; Klinov DV; Schäffer TE; Dubrovin EV
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124835. PubMed ID: 37201883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifilament Collagen Fiber Bundles with Tendon-like Structure and Mechanical Performance.
    Yaghoobi H; Clarke A; Kerr G; Frampton J; Kreplak L
    Macromol Rapid Commun; 2023 Sep; 44(18):e2300204. PubMed ID: 37291949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deformation micromechanisms of collagen fibrils under uniaxial tension.
    Tang Y; Ballarini R; Buehler MJ; Eppell SJ
    J R Soc Interface; 2010 May; 7(46):839-50. PubMed ID: 19897533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray diffraction analysis of tendon collagen at ambient and cryogenic temperatures: role of hydration.
    Price RI; Lees S; Kirschner DA
    Int J Biol Macromol; 1997 Feb; 20(1):23-33. PubMed ID: 9110182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy.
    Cisneros DA; Hung C; Franz CM; Muller DJ
    J Struct Biol; 2006 Jun; 154(3):232-45. PubMed ID: 16600632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanomechanical mapping of single collagen fibrils under tension.
    Peacock CJ; Kreplak L
    Nanoscale; 2019 Aug; 11(30):14417-14425. PubMed ID: 31334733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New insight into the shortening of the collagen fibril D-period in human cornea.
    Jastrzebska M; Tarnawska D; Wrzalik R; Chrobak A; Grelowski M; Wylegala E; Zygadlo D; Ratuszna A
    J Biomol Struct Dyn; 2017 Feb; 35(3):551-563. PubMed ID: 26872619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanomechanics of Type I Collagen.
    Varma S; Orgel JP; Schieber JD
    Biophys J; 2016 Jul; 111(1):50-6. PubMed ID: 27410733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules.
    Choi H; Chang HJ; Lee M; Na S
    Chemphyschem; 2017 Apr; 18(7):817-827. PubMed ID: 28160391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
    Zhao Z; Shklyaev OE; Nili A; Mohamed MN; Kubicki JD; Crespi VH; Zhong L
    J Phys Chem A; 2013 Mar; 117(12):2580-9. PubMed ID: 23418823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration.
    Giubertoni G; Feng L; Klein K; Giannetti G; Rutten L; Choi Y; van der Net A; Castro-Linares G; Caporaletti F; Micha D; Hunger J; Deblais A; Bonn D; Sommerdijk N; Šarić A; Ilie IM; Koenderink GH; Woutersen S
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2313162121. PubMed ID: 38451946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tensile mechanical properties of collagen type I and its enzymatic crosslinks.
    Kwansa AL; De Vita R; Freeman JW
    Biophys Chem; 2016; 214-215():1-10. PubMed ID: 27160969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observations on the different substrate behavior of tropocollagen molecules in solution and intermolecularly cross-linked tropocollagen within insoluble polymeric collagen fibrils.
    Steven FS
    Biochem J; 1976 May; 155(2):391-400. PubMed ID: 180984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collagen Fibril Intermolecular Spacing Changes with 2-Propanol: A Mechanism for Tissue Stiffness.
    Wells HC; Sizeland KH; Kelly SJR; Kirby N; Hawley A; Mudie S; Haverkamp RG
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2524-2532. PubMed ID: 33465908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tropocollagen springs allow collagen fibrils to stretch elastically.
    Bell JS; Hayes S; Whitford C; Sanchez-Weatherby J; Shebanova O; Terrill NJ; Sørensen TLM; Elsheikh A; Meek KM
    Acta Biomater; 2022 Apr; 142():185-193. PubMed ID: 35081430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Micromechanical analysis of native and cross-linked collagen type I fibrils supports the existence of microfibrils.
    Yang L; van der Werf KO; Dijkstra PJ; Feijen J; Bennink ML
    J Mech Behav Biomed Mater; 2012 Feb; 6():148-58. PubMed ID: 22301184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.