These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38976113)

  • 1. Modelling the rheology of living cell cytoplasm: poroviscoelasticity and fluid-to-solid transition.
    Thekkethil N; Köry J; Guo M; Stewart PS; Hill NA; Luo X
    Biomech Model Mechanobiol; 2024 Jul; ():. PubMed ID: 38976113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood clot behaves as a poro-visco-elastic material.
    Ghezelbash F; Liu S; Shirazi-Adl A; Li J
    J Mech Behav Biomed Mater; 2022 Apr; 128():105101. PubMed ID: 35124354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytoplasm of living cells behaves as a poroelastic material.
    Moeendarbary E; Valon L; Fritzsche M; Harris AR; Moulding DA; Thrasher AJ; Stride E; Mahadevan L; Charras GT
    Nat Mater; 2013 Mar; 12(3):253-61. PubMed ID: 23291707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size- and speed-dependent mechanical behavior in living mammalian cytoplasm.
    Hu J; Jafari S; Han Y; Grodzinsky AJ; Cai S; Guo M
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9529-9534. PubMed ID: 28827333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions.
    Maxian O; Peláez RP; Mogilner A; Donev A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009240. PubMed ID: 34871298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell nucleus as a microrheological probe to study the rheology of the cytoskeleton.
    Moradi M; Nazockdast E
    Biophys J; 2021 May; 120(9):1542-1564. PubMed ID: 33705756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry.
    Gerum R; Mirzahossein E; Eroles M; Elsterer J; Mainka A; Bauer A; Sonntag S; Winterl A; Bartl J; Fischer L; Abuhattum S; Goswami R; Girardo S; Guck J; Schrüfer S; Ströhlein N; Nosratlo M; Herrmann H; Schultheis D; Rico F; Müller SJ; Gekle S; Fabry B
    Elife; 2022 Sep; 11():. PubMed ID: 36053000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spring-damper equivalents of the fractional, poroelastic, and poroviscoelastic models for elastography.
    Holm S
    NMR Biomed; 2018 Oct; 31(10):e3854. PubMed ID: 29178340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data.
    Mehrabian A; Abousleiman YN; Mapstone TB; El-Amm CA
    J Theor Biol; 2015 Nov; 384():19-32. PubMed ID: 26277735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.
    Connizzo BK; Grodzinsky AJ
    J Biomech; 2017 Mar; 54():11-18. PubMed ID: 28233551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular mechanochemical waves in an active poroelastic model.
    Radszuweit M; Alonso S; Engel H; Bär M
    Phys Rev Lett; 2013 Mar; 110(13):138102. PubMed ID: 23581377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: Application to tendon and skin biophysics.
    Oftadeh R; Connizzo BK; Nia HT; Ortiz C; Grodzinsky AJ
    Acta Biomater; 2018 Apr; 70():249-259. PubMed ID: 29425716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling.
    Salmo IC; Sorbie KS; Skauge A
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of blood cells as soft tissues.
    Skalak R; Chien S
    Biorheology; 1982; 19(3):453-61. PubMed ID: 7104483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of a poroelastic cytoplasm for the dynamics of animal cell shape.
    Mitchison TJ; Charras GT; Mahadevan L
    Semin Cell Dev Biol; 2008 Jun; 19(3):215-23. PubMed ID: 18395478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanics of (Poro-)Elastic Contractile Actomyosin Networks As a Model System of the Cell Cytoskeleton.
    Choudhary S; Livne G; Gat S; Bernheim-Groswasser A
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36971445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling articular cartilage: the relative motion of two adjacent poroviscoelastic layers.
    Whiteley JP; Brown CP; Gaffney EA
    Math Med Biol; 2022 Sep; 39(3):251-298. PubMed ID: 35679151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum.
    Radszuweit M; Engel H; Bär M
    PLoS One; 2014; 9(6):e99220. PubMed ID: 24927427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.