These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 38976710)
1. A randomized cross-over study protocol to evaluate long-term gait training with a pediatric robotic exoskeleton outside the clinical setting in children with movement disorders. Devine TM; Alter KE; Damiano DL; Bulea TC PLoS One; 2024; 19(7):e0304087. PubMed ID: 38976710 [TBL] [Abstract][Full Text] [Related]
2. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial. Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131 [TBL] [Abstract][Full Text] [Related]
3. Overground Gait Training With a Wearable Robot in Children With Cerebral Palsy: A Randomized Clinical Trial. Choi JY; Kim SK; Hong J; Park H; Yang SS; Park D; Song MK JAMA Netw Open; 2024 Jul; 7(7):e2422625. PubMed ID: 39037815 [TBL] [Abstract][Full Text] [Related]
4. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension. Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297 [TBL] [Abstract][Full Text] [Related]
5. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application. Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974 [TBL] [Abstract][Full Text] [Related]
6. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
7. Effects of Robotic Exoskeleton-Aided Gait Training in the Strength, Body Balance, and Walking Speed in Individuals With Multiple Sclerosis: A Single-Group Preliminary Study. Drużbicki M; Guzik A; Przysada G; Phd LP; Brzozowska-Magoń A; Cygoń K; Boczula G; Bartosik-Psujek H Arch Phys Med Rehabil; 2021 Feb; 102(2):175-184. PubMed ID: 33181115 [TBL] [Abstract][Full Text] [Related]
8. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation. Lerner ZF; Damiano DL; Bulea TC Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959 [TBL] [Abstract][Full Text] [Related]
9. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait. Lerner ZF; Damiano DL; Bulea TC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868 [TBL] [Abstract][Full Text] [Related]
10. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy. Lerner ZF; Damiano DL; Bulea TC Sci Rep; 2017 Oct; 7(1):13512. PubMed ID: 29044202 [TBL] [Abstract][Full Text] [Related]
11. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy. Lerner ZF; Damiano DL; Bulea TC Sci Transl Med; 2017 Aug; 9(404):. PubMed ID: 28835518 [TBL] [Abstract][Full Text] [Related]
12. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study. Fang Y; Orekhov G; Lerner ZF Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858 [TBL] [Abstract][Full Text] [Related]
13. Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT). Ammann-Reiffer C; Bastiaenen CH; Meyer-Heim AD; van Hedel HJ BMC Pediatr; 2017 Mar; 17(1):64. PubMed ID: 28253887 [TBL] [Abstract][Full Text] [Related]
14. Comparing the effectiveness of robotic plantarflexion resistance and biofeedback between overground and treadmill walking. Bowersock CD; Lerner ZF J Biomech; 2024 Oct; 175():112282. PubMed ID: 39182263 [TBL] [Abstract][Full Text] [Related]
15. Treatment with robot-assisted gait trainer Walkbot along with physiotherapy vs. isolated physiotherapy in children and adolescents with cerebral palsy. Experimental study. Olmos-Gómez R; Calvo-Muñoz I; Gómez-Conesa A BMC Neurol; 2024 Jul; 24(1):245. PubMed ID: 39009990 [TBL] [Abstract][Full Text] [Related]
16. Robot-assisted gait training using a very small-sized Hybrid Assistive Limb® for pediatric cerebral palsy: A case report. Kuroda M; Nakagawa S; Mutsuzaki H; Mataki Y; Yoshikawa K; Takahashi K; Nakayama T; Iwasaki N Brain Dev; 2020 Jun; 42(6):468-472. PubMed ID: 32249081 [TBL] [Abstract][Full Text] [Related]
17. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349 [TBL] [Abstract][Full Text] [Related]
19. Effects of backward-downhill treadmill training versus manual static plantarflexor stretching on muscle-joint pathology and function in children with spastic Cerebral Palsy. Hösl M; Böhm H; Eck J; Döderlein L; Arampatzis A Gait Posture; 2018 Sep; 65():121-128. PubMed ID: 30558918 [TBL] [Abstract][Full Text] [Related]
20. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy. Kim SK; Park D; Yoo B; Shim D; Choi JO; Choi TY; Park ES Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]