These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38976835)

  • 1. Nanoparticles that Distinguish Chemical and Supramolecular Contexts of Lysine for Single-Site Functionalization of Protein.
    Ghosh A; Zhao Y
    Nano Lett; 2024 Jul; 24(28):8763-8769. PubMed ID: 38976835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Selective Functionalization of Molecularly Imprinted Nanoparticles to Recognize Lysine-Rich Peptides.
    Ghosh A; Zhao Y
    Biomacromolecules; 2024 Sep; 25(9):6188-6194. PubMed ID: 39092916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-penetrating protein-recognizing polymeric nanoparticles through dynamic covalent chemistry and double imprinting.
    Ghosh A; Sharma M; Zhao Y
    Nat Commun; 2024 May; 15(1):3731. PubMed ID: 38702306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Selective Lysine Reactions Guided by Protein-Peptide Interaction.
    Zhang Y; Liang Y; Huang F; Zhang Y; Li X; Xia J
    Biochemistry; 2019 Feb; 58(7):1010-1018. PubMed ID: 30624906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-oriented nanoparticles for site-selective immunoglobulin G recognition via epitope imprinting approach.
    Çorman ME; Armutcu C; Uzun L; Say R; Denizli A
    Colloids Surf B Biointerfaces; 2014 Nov; 123():831-7. PubMed ID: 25454659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins.
    Tantipanjaporn A; Wong MK
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-imprinting and In-Cavity Functionalization.
    Takeuchi T; Sunayama H; Takano E; Kitayama Y
    Adv Biochem Eng Biotechnol; 2015; 150():95-106. PubMed ID: 25796621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence-Selective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting.
    Zhao Y
    Chemistry; 2018 Sep; 24(53):14001-14009. PubMed ID: 29694679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning surface-cross-linking of molecularly imprinted cross-linked micelles for molecular recognition in water.
    Zhang S; Zhao Y
    J Mol Recognit; 2019 Apr; 32(4):e2769. PubMed ID: 30419606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nano-confinement and conformational mobility on molecular imprinting of cross-linked micelles.
    Chen K; Zhao Y
    Org Biomol Chem; 2019 Sep; 17(37):8611-8617. PubMed ID: 31528942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zwitterionic Molecularly Imprinted Cross-Linked Micelles for Alkaloid Recognition in Water.
    Duan L; Zhao Y
    J Org Chem; 2019 Nov; 84(21):13457-13464. PubMed ID: 31545044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring a Dress to Single Protein Molecules: Proteins Can Do It Themselves through Localized Photo-Polymerization and Molecular Imprinting.
    Bossi AM; Haupt K
    Chemistry; 2020 Nov; 26(64):14556-14559. PubMed ID: 32767695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of lysine reactivity in four-helix bundle proteins by site-selective pKa depression: expanding the versatility of proteins by postsynthetic functionalization.
    Andersson LK; Caspersson M; Baltzer L
    Chemistry; 2002 Aug; 8(16):3687-97. PubMed ID: 12203296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial acetylation of lysine residues improves intraprotein cross-linking.
    Guo X; Bandyopadhyay P; Schilling B; Young MM; Fujii N; Aynechi T; Guy RK; Kuntz ID; Gibson BW
    Anal Chem; 2008 Feb; 80(4):951-60. PubMed ID: 18201069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of Methylation State Specific 3xMBT Domain Using ELISA Screening.
    Cohen DO; Duchin S; Feldman M; Zarivach R; Aharoni A; Levy D
    PLoS One; 2016; 11(4):e0154207. PubMed ID: 27111853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Identification of Lysine-Acetylated Peptides Using a Molecularly Imprinted Monolith Prepared by a Deep Eutectic Solvent Monomer.
    Zhang X; Wang Y; Wei ZH; An DY; Pu WR; Liu ZS; Huang YP
    J Proteome Res; 2022 Feb; 21(2):325-338. PubMed ID: 35050640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Recent advances and perspective in the study of the molecular imprinting of proteins].
    Sun YJ; Luo WQ; Pan J
    Yao Xue Xue Bao; 2011 Feb; 46(2):132-7. PubMed ID: 21542282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing lysine posttranslational modifications by unnatural amino acids.
    Maas MN; Hintzen JCJ; Mecinović J
    Chem Commun (Camb); 2022 Jun; 58(52):7216-7231. PubMed ID: 35678513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of High-Affinity Molecularly Imprinted Nanoparticles for Protein Recognition via a Solid-Phase Synthesis Protocol.
    Canfarotta F; Piletsky SA; Turner NW
    Methods Mol Biol; 2020; 2073():183-194. PubMed ID: 31612443
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.