These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38977047)

  • 1. Heat-treated alginate-polycaprolactone core-shell nanofibers by emulsion electrospinning process for biomedical applications.
    Negahdari N; Alizadeh S; Majidi J; Saeed M; Ghadimi T; Tahermanesh K; Arabsorkhi-Mishabi A; Pezeshki-Modaress M
    Int J Biol Macromol; 2024 Aug; 275(Pt 2):133709. PubMed ID: 38977047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of chondrogenic differentiation utilizing biphasic core-shell alginate sulfate electrospun nanofibrous scaffold.
    Omrani E; Haramshahi MA; Najmoddin N; Saeed M; Pezeshki-Modaress M
    Colloids Surf B Biointerfaces; 2024 Oct; 242():114080. PubMed ID: 39003847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of core-shell mPEG-PLGA composite microparticles for development of cell-scaffold constructs.
    Wen Y; Gallego MR; Nielsen LF; Jorgensen L; Møller EH; Nielsen HM
    Eur J Pharm Biopharm; 2013 Sep; 85(1):87-98. PubMed ID: 23958320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications.
    Singh R; Ahmed F; Polley P; Giri J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41924-41934. PubMed ID: 30433758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure-dependent mechanical properties of electrospun core-shell scaffolds at multi-scale levels.
    Horner CB; Ico G; Johnson J; Zhao Y; Nam J
    J Mech Behav Biomed Mater; 2016 Jun; 59():207-219. PubMed ID: 26774618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.
    Jeong SI; Krebs MD; Bonino CA; Samorezov JE; Khan SA; Alsberg E
    Tissue Eng Part A; 2011 Jan; 17(1-2):59-70. PubMed ID: 20672984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emulsion electrospinning of sodium alginate/poly(ε-caprolactone) core/shell nanofibers for biomedical applications.
    Norouzi MR; Ghasemi-Mobarakeh L; Itel F; Schoeller J; Fashandi H; Borzi A; Neels A; Fortunato G; Rossi RM
    Nanoscale Adv; 2022 Jun; 4(13):2929-2941. PubMed ID: 36131996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells.
    Hu Q; Su C; Zeng Z; Zhang H; Feng R; Feng J; Li S
    J Biomater Appl; 2020; 35(4-5):553-566. PubMed ID: 32611277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A
    J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid polycaprolactone/polyethylene oxide scaffolds with tunable fiber surface morphology, improved hydrophilicity and biodegradability for bone tissue engineering applications.
    Remya KR; Chandran S; Mani S; John A; Ramesh P
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1444-1462. PubMed ID: 29656699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering.
    Pedram Rad Z; Mokhtari J; Abbasi M
    Int J Biol Macromol; 2019 Aug; 135():530-543. PubMed ID: 31152839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Design of Novel Microscaffolds for Fibroblast Guidance toward
    Pedram P; Mazio C; Imparato G; Netti PA; Salerno A
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9589-9603. PubMed ID: 33595284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emulsion electrospun PLA/calcium alginate nanofibers for periodontal tissue engineering.
    Ye Z; Xu W; Shen R; Yan Y
    J Biomater Appl; 2020 Jan; 34(6):763-777. PubMed ID: 31506032
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrospun Fibers for Use in Implantable Materials to Support Cell Therapy.
    Hernandez-Sanchez D; Spasojevic A; Suuronen EJ; Alarcon EI
    Methods Mol Biol; 2024; 2835():289-300. PubMed ID: 39105924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a bioactive fiber scaffold with entrapped HUVECs in coaxial electrospun core-shell fiber.
    Ang HY; Irvine SA; Avrahami R; Sarig U; Bronshtein T; Zussman E; Boey FY; Machluf M; Venkatraman SS
    Biomatter; 2014; 4():e28238. PubMed ID: 24553126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coated electrospun alginate-containing fibers as novel delivery systems for regenerative purposes.
    Vigani B; Rossi S; Sandri G; Bonferoni MC; Milanesi G; Bruni G; Ferrari F
    Int J Nanomedicine; 2018; 13():6531-6550. PubMed ID: 30410337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration.
    Abdollahi Boraei SB; Nourmohammadi J; Bakhshandeh B; Dehghan MM; Gholami H; Gonzalez Z; Sanchez-Herencia AJ; Ferrari B
    Biomed Mater; 2021 Feb; 16(2):025009. PubMed ID: 33434897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications.
    Semitela Â; Girão AF; Fernandes C; Ramalho G; Bdikin I; Completo A; Marques PA
    J Biomater Appl; 2020; 35(4-5):471-484. PubMed ID: 32635814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Diabetic Wound Healing Through Improved Angiogenesis: The Role of Emulsion-Based Core-Shell Micro/Nanofibrous Scaffold with Sustained CuO Nanoparticle Delivery.
    Alizadeh S; Samadikuchaksaraei A; Jafari D; Orive G; Dolatshahi-Pirouz A; Pezeshki-Modaress M; Gholipourmalekabadi M
    Small; 2024 Jun; 20(24):e2309164. PubMed ID: 38175832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.