These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38977113)
21. Nettle-Leaf Extract Derived ZnO/CuO Nanoparticle-Biopolymer-Based Antioxidant and Antimicrobial Nanocomposite Packaging Films and Their Impact on Extending the Post-Harvest Shelf Life of Guava Fruit. Kalia A; Kaur M; Shami A; Jawandha SK; Alghuthaymi MA; Thakur A; Abd-Elsalam KA Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33562547 [TBL] [Abstract][Full Text] [Related]
22. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Líbalová H; Costa PM; Olsson M; Farcal L; Ortelli S; Blosi M; Topinka J; Costa AL; Fadeel B Chemosphere; 2018 Apr; 196():482-493. PubMed ID: 29324388 [TBL] [Abstract][Full Text] [Related]
23. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Azam A; Ahmed AS; Oves M; Khan MS; Memic A Int J Nanomedicine; 2012; 7():3527-35. PubMed ID: 22848176 [TBL] [Abstract][Full Text] [Related]
24. Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli. Moniri Javadhesari S; Alipour S; Mohammadnejad S; Akbarpour MR Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110011. PubMed ID: 31546455 [TBL] [Abstract][Full Text] [Related]
25. Investigation of the Characteristics and Antibacterial Activity of Polymer-Modified Copper Oxide Nanoparticles. Chen NF; Liao YH; Lin PY; Chen WF; Wen ZH; Hsieh S Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884715 [TBL] [Abstract][Full Text] [Related]
26. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Priya M; Venkatesan R; Deepa S; Sana SS; Arumugam S; Karami AM; Vetcher AA; Kim SC Sci Rep; 2023 Nov; 13(1):18838. PubMed ID: 37914791 [TBL] [Abstract][Full Text] [Related]
27. Effects of the copper oxide nanoparticles (CuO NPs) on Eskin A; Bozdoğan H Drug Chem Toxicol; 2022 Jul; 45(4):1870-1880. PubMed ID: 33657947 [TBL] [Abstract][Full Text] [Related]
28. Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures. Hazrati R; Zare N; Asghari R; Sheikhzadeh P; Johari-Ahar M Appl Microbiol Biotechnol; 2022 Sep; 106(18):6017-6031. PubMed ID: 35972514 [TBL] [Abstract][Full Text] [Related]
29. Green Synthesis of Copper Oxide Nanoparticles Using Amin F; Fozia ; Khattak B; Alotaibi A; Qasim M; Ahmad I; Ullah R; Bourhia M; Gul A; Zahoor S; Ahmad R Evid Based Complement Alternat Med; 2021; 2021():5589703. PubMed ID: 34239581 [TBL] [Abstract][Full Text] [Related]
30. Facile synthesis of Fe Mohamed AT; Hameed RA; El-Moslamy SH; Fareid M; Othman M; Loutfy SA; Kamoun EA; Elnouby M Sci Rep; 2024 Mar; 14(1):6081. PubMed ID: 38480834 [TBL] [Abstract][Full Text] [Related]
31. A comparative study of in vivo toxicity in zebrafish embryos synthesized CuO nanoparticles characterized from Salacia reticulata. Sivalingam AM; Pandian A; Rengarajan S; Boopathy N; Selvaraj KRN Environ Geochem Health; 2024 Jul; 46(9):311. PubMed ID: 39001930 [TBL] [Abstract][Full Text] [Related]
32. Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity. Indhira D; Krishnamoorthy M; Ameen F; Bhat SA; Arumugam K; Ramalingam S; Priyan SR; Kumar GS Environ Res; 2022 Sep; 212(Pt C):113323. PubMed ID: 35472463 [TBL] [Abstract][Full Text] [Related]
33. Assessment of Silver Nanoparticles Derived from Brown Algae Hamouda RA; Aljohani ES Mar Drugs; 2024 Mar; 22(4):. PubMed ID: 38667771 [TBL] [Abstract][Full Text] [Related]
34. In-Vitro Catalytic and Antibacterial Potential of Green Synthesized CuO Nanoparticles against Prevalent Multiple Drug Resistant Bovine Mastitogen Ul-Hamid A; Dafalla H; Hakeem AS; Haider A; Ikram M Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216450 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and evaluation of the structural and antibacterial properties of doped copper oxide. Lv Y; Li L; Yin P; Lei T Dalton Trans; 2020 Apr; 49(15):4699-4709. PubMed ID: 32202585 [TBL] [Abstract][Full Text] [Related]
37. Biogenic synthesized copper oxide nanoparticles by Bacillus subtilis: Investigating antibacterial activity on the mexAB-oprM efflux pump genes and cytotoxic effect on MCF-7 cells. Azizi H; Akbari N; Kheirandish F; Sepahvand A J Basic Microbiol; 2023 Sep; 63(9):960-970. PubMed ID: 37189220 [TBL] [Abstract][Full Text] [Related]
38. Development of silver-doped copper oxide and chitosan nanocomposites for enhanced antimicrobial activities. Anwar Y; Jaha HF; Ul-Islam M; Kamal T; Khan SB; Ullah I; Al-Maaqar SM; Ahmed S Z Naturforsch C J Biosci; 2024 May; 79(5-6):137-148. PubMed ID: 38820053 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and characterization of marine seagrass (Cymodocea serrulata) mediated titanium dioxide nanoparticles for antibacterial, antibiofilm and antioxidant properties. Narayanan M; Srinivasan S; Gnanasekaran C; Ramachandran G; Chelliah CK; Rajivgandhi G; Maruthupandy M; Quero F; Li WJ; Hayder G; Khaled JM; Arunachalam A; Manoharan N Microb Pathog; 2024 Apr; 189():106595. PubMed ID: 38387848 [TBL] [Abstract][Full Text] [Related]
40. Synthesis, Characterization, and Antibacterial Activity of Mg-Doped CuO Nanoparticles. Adnan RM; Mezher M; Abdallah AM; Awad R; Khalil MI Molecules; 2022 Dec; 28(1):. PubMed ID: 36615296 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]