These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38977259)
1. The influence of multiple cognitive workload levels of an exergame on dorsal attention network connectivity at the source level. Ghani U; Niazi I; Signal N; Kumari N; Amjad I; Haavik H; Taylor D Physiol Behav; 2024 Oct; 284():114628. PubMed ID: 38977259 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Dorsal Attention Network to Salience Network Interaction in Video Gamers During Sensorimotor Decision-Making Tasks. Jordan T; Dhamala M Brain Connect; 2023 Mar; 13(2):97-106. PubMed ID: 36053714 [No Abstract] [Full Text] [Related]
3. The high-working load states induced by action real-time strategy gaming: An EEG power spectrum and network study. Gong D; Li Y; Yan Y; Yao Y; Gao Y; Liu T; Ma W; Yao D Neuropsychologia; 2019 Aug; 131():42-52. PubMed ID: 31100346 [TBL] [Abstract][Full Text] [Related]
4. Alpha frequency rTMS modulates theta lagged nonlinear connectivity in dorsal attention network. Kazemi R; Rostami R; Dehghan S; Nasiri Z; Lotfollahzadeh S; L Hadipour A; Khomami S; Ishii R; Ikeda S Brain Res Bull; 2020 Sep; 162():271-281. PubMed ID: 32619694 [TBL] [Abstract][Full Text] [Related]
5. Real-Time Strategy Video Game Experience and Visual Perceptual Learning. Kim YH; Kang DW; Kim D; Kim HJ; Sasaki Y; Watanabe T J Neurosci; 2015 Jul; 35(29):10485-92. PubMed ID: 26203143 [TBL] [Abstract][Full Text] [Related]
6. Parsing the intrinsic networks underlying attention: a resting state study. Visintin E; De Panfilis C; Antonucci C; Capecci C; Marchesi C; Sambataro F Behav Brain Res; 2015 Feb; 278():315-22. PubMed ID: 25311282 [TBL] [Abstract][Full Text] [Related]
7. Action video gaming and the brain: fMRI effects without behavioral effects in visual and verbal cognitive tasks. Richlan F; Schubert J; Mayer R; Hutzler F; Kronbichler M Brain Behav; 2018 Jan; 8(1):e00877. PubMed ID: 29568680 [TBL] [Abstract][Full Text] [Related]
8. Time course of changes in motor-cognitive exergame performances during task-specific training in patients with dementia: identification and predictors of early training response. Werner C; Rosner R; Wiloth S; Lemke NC; Bauer JM; Hauer K J Neuroeng Rehabil; 2018 Nov; 15(1):100. PubMed ID: 30409202 [TBL] [Abstract][Full Text] [Related]
9. Functional connectivity at rest captures individual differences in visual search. Bueichekú E; Miró-Padilla A; Ávila C Brain Struct Funct; 2020 Mar; 225(2):537-549. PubMed ID: 31897605 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of a Single-Task ERP Measure to Evaluate Cognitive Workload During a Novel Exergame. Ghani U; Signal N; Niazi IK; Taylor D Front Hum Neurosci; 2021; 15():742384. PubMed ID: 34566610 [TBL] [Abstract][Full Text] [Related]
11. Effects of task complexity and age-differences on task-related functional connectivity of attentional networks. O'Connell MA; Basak C Neuropsychologia; 2018 Jun; 114():50-64. PubMed ID: 29655800 [TBL] [Abstract][Full Text] [Related]
12. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation. Tsvetanov KA; Henson RN; Tyler LK; Razi A; Geerligs L; Ham TE; Rowe JB; J Neurosci; 2016 Mar; 36(11):3115-26. PubMed ID: 26985024 [TBL] [Abstract][Full Text] [Related]
14. Task- and domain-specific modulation of functional connectivity in the ventral and dorsal object-processing pathways. Garcea FE; Chen Q; Vargas R; Narayan DA; Mahon BZ Brain Struct Funct; 2018 Jul; 223(6):2589-2607. PubMed ID: 29536173 [TBL] [Abstract][Full Text] [Related]
15. Changes of neural coupling between cognitive and motor networks associated with dual-task performance in Parkinson's disease. Kim E; Yun SJ; Oh BM; Seo HG Neurol Sci; 2024 Jun; 45(6):2651-2659. PubMed ID: 38153677 [TBL] [Abstract][Full Text] [Related]
16. Enhanced executive attention efficiency after adaptive force control training: Behavioural and physiological results. Liu M; Zhang J; Jia W; Chang Q; Shan S; Hu Y; Wang D Behav Brain Res; 2019 Dec; 376():111859. PubMed ID: 30898680 [TBL] [Abstract][Full Text] [Related]
18. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state. Dørum ES; Kaufmann T; Alnæs D; Andreassen OA; Richard G; Kolskår KK; Nordvik JE; Westlye LT Neuroimage; 2017 Mar; 148():364-372. PubMed ID: 28111190 [TBL] [Abstract][Full Text] [Related]
19. Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty. Jaquess KJ; Lo LC; Oh H; Lu C; Ginsberg A; Tan YY; Lohse KR; Miller MW; Hatfield BD; Gentili RJ Neuroscience; 2018 Nov; 393():305-318. PubMed ID: 30266685 [TBL] [Abstract][Full Text] [Related]
20. Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. Seminowicz DA; Davis KD J Neurophysiol; 2007 May; 97(5):3651-9. PubMed ID: 17314240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]