These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38977404)

  • 1. Spontaneous Transition between Multiple Conductance States and Rectifying Behaviors in an Artificial Single-Molecule Funnel.
    Lin JF; Wang XD; Ao YF; Wang QQ; Wang DX
    Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202411702. PubMed ID: 38977404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rectifying conductance substates in a large conductance Ca(2+)-activated K+ channel: evidence for a fluctuating barrier mechanism.
    Moss GW; Moczydlowski E
    J Gen Physiol; 1996 Jan; 107(1):47-68. PubMed ID: 8741730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic acidosis induces multiple conductance states in ATP-sensitive potassium channels of cardiac myocytes.
    Fan Z; Furukawa T; Sawanobori T; Makielski JC; Hiraoka M
    J Membr Biol; 1993 Nov; 136(2):169-79. PubMed ID: 8107073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion channel reconstitution in lipid bilayers.
    Zakharian E
    Methods Enzymol; 2021; 652():273-291. PubMed ID: 34059285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Artificial Single Molecular Channel Showing High Chloride Transport Selectivity and pH-Responsive Conductance.
    Huang WL; Wang XD; Ao YF; Wang QQ; Wang DX
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202302198. PubMed ID: 37021747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel.
    Tao T; Xie J; Drumm ML; Zhao J; Davis PB; Ma J
    Biophys J; 1996 Feb; 70(2):743-53. PubMed ID: 8789091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of amyloid beta protein fragment [1-40]-formed channels.
    Kourie JI; Henry CL; Farrelly P
    Cell Mol Neurobiol; 2001 Jun; 21(3):255-84. PubMed ID: 11569537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K channel subconductance levels result from heteromeric pore conformations.
    Chapman ML; VanDongen AM
    J Gen Physiol; 2005 Aug; 126(2):87-103. PubMed ID: 16043772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hidden Markov model analysis of intermediate gating steps associated with the pore gate of shaker potassium channels.
    Zheng J; Vankataramanan L; Sigworth FJ
    J Gen Physiol; 2001 Nov; 118(5):547-64. PubMed ID: 11696611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation-dependent subconductance levels in the drk1 K channel suggest a subunit basis for ion permeation and gating.
    Chapman ML; VanDongen HM; VanDongen AM
    Biophys J; 1997 Feb; 72(2 Pt 1):708-19. PubMed ID: 9017198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subconductance gating and voltage sensitivity of sarcoplasmic reticulum K(+) channels: a modeling approach.
    Matyjaszkiewicz A; Venturi E; O'Brien F; Iida T; Nishi M; Takeshima H; Tsaneva-Atanasova K; Sitsapesan R
    Biophys J; 2015 Jul; 109(2):265-76. PubMed ID: 26200862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent gating of single wild-type and S4 mutant KAT1 inward rectifier potassium channels.
    Zei PC; Aldrich RW
    J Gen Physiol; 1998 Dec; 112(6):679-713. PubMed ID: 9834140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating transitions in bacterial ion channels measured at 3 microns resolution.
    Shapovalov G; Lester HA
    J Gen Physiol; 2004 Aug; 124(2):151-61. PubMed ID: 15277576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Chloride-Selective Channel: Shape and Function Mimic of the ClC Channel Selective Pore.
    Huang WL; Wang XD; Ao YF; Wang QQ; Wang DX
    J Am Chem Soc; 2020 Aug; 142(31):13273-13277. PubMed ID: 32691594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of voltage dependence of connexin channels: an integrative appraisal.
    González D; Gómez-Hernández JM; Barrio LC
    Prog Biophys Mol Biol; 2007; 94(1-2):66-106. PubMed ID: 17470374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule study of full-length NaChBac by planar lipid bilayer recording.
    Jo A; Hoi H; Zhou H; Gupta M; Montemagno CD
    PLoS One; 2017; 12(11):e0188861. PubMed ID: 29190805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SITS blockade induces multiple subconductance states in a large conductance chloride channel.
    Vaca L
    J Membr Biol; 1999 May; 169(1):65-73. PubMed ID: 10227853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Single-Channel Conductance of Voltage-Dependent Anion Channel by Mercuric Chloride in a Planar Lipid Bilayer.
    Malik C; Ghosh S
    J Membr Biol; 2020 Aug; 253(4):357-371. PubMed ID: 32748041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.