These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38977533)

  • 1. Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET.
    Maus J; Nikulin P; Hofheinz F; Petr J; Braune A; Kotzerke J; van den Hoff J
    EJNMMI Phys; 2024 Jul; 11(1):58. PubMed ID: 38977533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of image quality in PET using post-reconstruction hybrid spatial-frequency domain filtering.
    Arabi H; Zaidi H
    Phys Med Biol; 2018 Oct; 63(21):215010. PubMed ID: 30272565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of quantitative accuracy for deep learning based denoising in oncological PET.
    Lu W; Onofrey JA; Lu Y; Shi L; Ma T; Liu Y; Liu C
    Phys Med Biol; 2019 Aug; 64(16):165019. PubMed ID: 31307019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks.
    Zaker N; Haddad K; Faghihi R; Arabi H; Zaidi H
    Eur J Nucl Med Mol Imaging; 2022 Oct; 49(12):4048-4063. PubMed ID: 35716176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of bilateral filtering for edge-preserving noise reduction in PET.
    Hofheinz F; Langner J; Beuthien-Baumann B; Oehme L; Steinbach J; Kotzerke J; van den Hoff J
    EJNMMI Res; 2011 Oct; 1(1):23. PubMed ID: 22214263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual high-count PET image generation using a deep learning method.
    Liu J; Ren S; Wang R; Mirian N; Tsai YJ; Kulon M; Pucar D; Chen MK; Liu C
    Med Phys; 2022 Sep; 49(9):5830-5840. PubMed ID: 35880541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency based gating: An alternative, conformal, approach to 4D PET data utilization.
    Kesner AL; Chung JH; Lind KE; Kwak JJ; Lynch D; Burckhardt D; Koo PJ
    Med Phys; 2016 Mar; 43(3):1451-61. PubMed ID: 26936729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning generation of preclinical positron emission tomography (PET) images from low-count PET with task-based performance assessment.
    Dutta K; Laforest R; Luo J; Jha AK; Shoghi KI
    Med Phys; 2024 Jun; 51(6):4324-4339. PubMed ID: 38710222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based low-dose CT simulator for non-linear reconstruction methods.
    Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J
    Med Phys; 2024 Jun; ():. PubMed ID: 38843540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven respiratory phase-matched PET attenuation correction without CT.
    Hwang D; Kang SK; Kim KY; Choi H; Seo S; Lee JS
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 33910170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4D numerical observer for lesion detection in respiratory-gated PET.
    Lorsakul A; Li Q; Trott CM; Hoog C; Petibon Y; Ouyang J; Laine AF; El Fakhri G
    Med Phys; 2014 Oct; 41(10):102504. PubMed ID: 25281979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose PET.
    Liu H; Wu J; Lu W; Onofrey JA; Liu YH; Liu C
    Phys Med Biol; 2020 Sep; 65(18):185006. PubMed ID: 32924973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven optimal binning for respiratory motion management in PET.
    Kesner AL; Meier JG; Burckhardt DD; Schwartz J; Lynch DA
    Med Phys; 2018 Jan; 45(1):277-286. PubMed ID: 29095485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A convolutional neural network for fully automated blood SUV determination to facilitate SUR computation in oncological FDG-PET.
    Nikulin P; Hofheinz F; Maus J; Li Y; Bütof R; Lange C; Furth C; Zschaeck S; Kreissl MC; Kotzerke J; van den Hoff J
    Eur J Nucl Med Mol Imaging; 2021 Apr; 48(4):995-1004. PubMed ID: 33006022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise2Void: unsupervised denoising of PET images.
    Song TA; Yang F; Dutta J
    Phys Med Biol; 2021 Nov; 66(21):. PubMed ID: 34663767
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.