These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38977577)

  • 1. In Planta Genome Editing in Commercial Wheat Varieties: Use of TaQsd1 to Lengthen Seed Dormancy.
    Luo W; Liu Y; Imai R
    Methods Mol Biol; 2024; 2830():163-171. PubMed ID: 38977577
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Liu Y; Luo W; Linghu Q; Abe F; Hisano H; Sato K; Kamiya Y; Kawaura K; Onishi K; Endo M; Toki S; Hamada H; Nagira Y; Taoka N; Imai R
    Front Plant Sci; 2021; 12():648841. PubMed ID: 33790930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat.
    Hamada H; Liu Y; Nagira Y; Miki R; Taoka N; Imai R
    Sci Rep; 2018 Sep; 8(1):14422. PubMed ID: 30258105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Editing to Produce Knockout Mutations of Seed Dormancy Genes in Wheat.
    Abe F; Kamiya Y; Ishida Y; Hisano H; Kawaura K; Komari T; Sato K
    Methods Mol Biol; 2024; 2830():137-148. PubMed ID: 38977575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in planta biolistic method for stable wheat transformation.
    Hamada H; Linghu Q; Nagira Y; Miki R; Taoka N; Imai R
    Sci Rep; 2017 Sep; 7(1):11443. PubMed ID: 28904403
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Imai R; Hamada H; Liu Y; Linghu Q; Kumagai Y; Nagira Y; Miki R; Taoka N
    Plant Biotechnol (Tokyo); 2020 Jun; 37(2):171-176. PubMed ID: 32821224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Analysis of Seed Dormancy Genes by Biolistic Transient Gene Expression in Immature Embryos of Wheat.
    Abe F; Mori M; Nakamura S
    Methods Mol Biol; 2024; 2830():131-136. PubMed ID: 38977574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step genome editing of elite crop germplasm during haploid induction.
    Kelliher T; Starr D; Su X; Tang G; Chen Z; Carter J; Wittich PE; Dong S; Green J; Burch E; McCuiston J; Gu W; Sun Y; Strebe T; Roberts J; Bate NJ; Que Q
    Nat Biotechnol; 2019 Mar; 37(3):287-292. PubMed ID: 30833776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9.
    Howells RM; Craze M; Bowden S; Wallington EJ
    BMC Plant Biol; 2018 Oct; 18(1):215. PubMed ID: 30285624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wheat heat shock transcription factor gene, TaHsf-7A, regulates seed dormancy and germination.
    Zhang L; Li T; Wang L; Cao K; Gao W; Yan S; Cao J; Lu J; Ma C; Chang C; Zhang H
    Plant Physiol Biochem; 2024 May; 210():108541. PubMed ID: 38552264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture.
    Li T; Hu J; Sun Y; Li B; Zhang D; Li W; Liu J; Li D; Gao C; Zhang Y; Wang Y
    Mol Plant; 2021 Nov; 14(11):1787-1798. PubMed ID: 34274523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Seed Dormancy Genes in Triticeae Species.
    Sato K; Nakamura S; Fujita M
    Methods Mol Biol; 2024; 2830():13-23. PubMed ID: 38977564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing.
    Luo J; Li S; Xu J; Yan L; Ma Y; Xia L
    Mol Plant; 2021 Jun; 14(6):847-850. PubMed ID: 33812982
    [No Abstract]   [Full Text] [Related]  

  • 14. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing.
    Qiu F; Xing S; Xue C; Liu J; Chen K; Chai T; Gao C
    Sci China Life Sci; 2022 Apr; 65(4):731-738. PubMed ID: 34406572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-based genome editing in wheat: a comprehensive review and future prospects.
    Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP
    Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review.
    Elsharawy H; Refat M
    Funct Integr Genomics; 2023 Aug; 23(3):265. PubMed ID: 37541970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA.
    Zhang Y; Liang Z; Zong Y; Wang Y; Liu J; Chen K; Qiu JL; Gao C
    Nat Commun; 2016 Aug; 7():12617. PubMed ID: 27558837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.).
    Yamasaki Y; Gao F; Jordan MC; Ayele BT
    BMC Plant Biol; 2017 Sep; 17(1):154. PubMed ID: 28915785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing.
    Zhang Z; Hua L; Gupta A; Tricoli D; Edwards KJ; Yang B; Li W
    Plant Biotechnol J; 2019 Aug; 17(8):1623-1635. PubMed ID: 30706614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.