These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38978088)

  • 1. Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis.
    Curion F; Rich-Griffin C; Agarwal D; Ouologuem S; Rue-Albrecht K; May L; Garcia GEL; Heumos L; Thomas T; Lason W; Sims D; Theis FJ; Dendrou CA
    Genome Biol; 2024 Jul; 25(1):181. PubMed ID: 38978088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dictionary learning for integrative, multimodal and scalable single-cell analysis.
    Hao Y; Stuart T; Kowalski MH; Choudhary S; Hoffman P; Hartman A; Srivastava A; Molla G; Madad S; Fernandez-Granda C; Satija R
    Nat Biotechnol; 2024 Feb; 42(2):293-304. PubMed ID: 37231261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.
    You Y; Tian L; Su S; Dong X; Jabbari JS; Hickey PF; Ritchie ME
    Genome Biol; 2021 Dec; 22(1):339. PubMed ID: 34906205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.
    Feng D; Whitehurst CE; Shan D; Hill JD; Yue YG
    BMC Genomics; 2019 Aug; 20(1):676. PubMed ID: 31455220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of synthetic cellular barcodes in the genome and transcriptome with BARtab and bartools.
    Holze H; Talarmain L; Fennell KA; Lam EY; Dawson MA; Vassiliadis D
    Cell Rep Methods; 2024 May; 4(5):100763. PubMed ID: 38670101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BABEL enables cross-modality translation between multiomic profiles at single-cell resolution.
    Wu KE; Yost KE; Chang HY; Zou J
    Proc Natl Acad Sci U S A; 2021 Apr; 118(15):. PubMed ID: 33827925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable integration of multiomic single-cell data using generative adversarial networks.
    Giansanti V; Giannese F; Botrugno OA; Gandolfi G; Balestrieri C; Antoniotti M; Tonon G; Cittaro D
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38696763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CITEViz: interactively classify cell populations in CITE-Seq via a flow cytometry-like gating workflow using R-Shiny.
    Kong GL; Nguyen TT; Rosales WK; Panikar AD; Cheney JHW; Lusardi TA; Yashar WM; Curtiss BM; Carratt SA; Braun TP; Maxson JE
    BMC Bioinformatics; 2024 Apr; 25(1):142. PubMed ID: 38566005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles.
    Jin S; Zhang L; Nie Q
    Genome Biol; 2020 Feb; 21(1):25. PubMed ID: 32014031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization.
    Taverna F; Goveia J; Karakach TK; Khan S; Rohlenova K; Treps L; Subramanian A; Schoonjans L; Dewerchin M; Eelen G; Carmeliet P
    Nucleic Acids Res; 2020 Jul; 48(W1):W385-W394. PubMed ID: 32392297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data.
    Vandenbon A; Diez D
    Nat Commun; 2020 Aug; 11(1):4318. PubMed ID: 32859930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single cell transcriptomics: moving towards multi-omics.
    Song Y; Xu X; Wang W; Tian T; Zhu Z; Yang C
    Analyst; 2019 May; 144(10):3172-3189. PubMed ID: 30849139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data.
    Andrews TS; Kiselev VY; McCarthy D; Hemberg M
    Nat Protoc; 2021 Jan; 16(1):1-9. PubMed ID: 33288955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.